These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 9213361)
1. Transepithelial transport of oligopeptides in the human intestinal cell, Caco-2. Shimizu M; Tsunogai M; Arai S Peptides; 1997; 18(5):681-7. PubMed ID: 9213361 [TBL] [Abstract][Full Text] [Related]
2. Transepithelial transport across Caco-2 cell monolayers of antihypertensive egg-derived peptides. PepT1-mediated flux of Tyr-Pro-Ile. Miguel M; Dávalos A; Manso MA; de la Peña G; Lasunción MA; López-Fandiño R Mol Nutr Food Res; 2008 Dec; 52(12):1507-13. PubMed ID: 18727013 [TBL] [Abstract][Full Text] [Related]
3. Transport of Antihypertensive Peptide RVPSL, Ovotransferrin 328-332, in Human Intestinal Caco-2 Cell Monolayers. Ding L; Wang L; Zhang Y; Liu J J Agric Food Chem; 2015 Sep; 63(37):8143-50. PubMed ID: 26335384 [TBL] [Abstract][Full Text] [Related]
4. Transport of micro-opioid receptor agonists and antagonist peptides across Caco-2 monolayer. Iwan M; Jarmołowska B; Bielikowicz K; Kostyra E; Kostyra H; Kaczmarski M Peptides; 2008 Jun; 29(6):1042-7. PubMed ID: 18355944 [TBL] [Abstract][Full Text] [Related]
5. Transepithelial transport of milk derived bioactive peptide VLPVPQK. Vij R; Reddi S; Kapila S; Kapila R Food Chem; 2016 Jan; 190():681-688. PubMed ID: 26213026 [TBL] [Abstract][Full Text] [Related]
6. Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2. Tamura K; Lee CP; Smith PL; Borchardt RT Pharm Res; 1996 Nov; 13(11):1663-7. PubMed ID: 8956331 [TBL] [Abstract][Full Text] [Related]
7. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Satake M; Enjoh M; Nakamura Y; Takano T; Kawamura Y; Arai S; Shimizu M Biosci Biotechnol Biochem; 2002 Feb; 66(2):378-84. PubMed ID: 11999412 [TBL] [Abstract][Full Text] [Related]
8. Hydrolysis and transepithelial transport of two corn gluten derived bioactive peptides in human Caco-2 cell monolayers. Ding L; Wang L; Zhang T; Yu Z; Liu J Food Res Int; 2018 Apr; 106():475-480. PubMed ID: 29579950 [TBL] [Abstract][Full Text] [Related]
9. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers. Ding L; Wang L; Yu Z; Zhang T; Liu J Int J Food Sci Nutr; 2016; 67(2):111-6. PubMed ID: 26883099 [TBL] [Abstract][Full Text] [Related]
10. Studies on intestinal absorption of sulpiride (2): transepithelial transport of sulpiride across the human intestinal cell line Caco-2. Watanabe K; Sawano T; Endo T; Sakata M; Sato J Biol Pharm Bull; 2002 Oct; 25(10):1345-50. PubMed ID: 12392092 [TBL] [Abstract][Full Text] [Related]
11. Stability and Transport of Spent Hen-Derived ACE-Inhibitory Peptides IWHHT, IWH, and IW in Human Intestinal Caco-2 Cell Monolayers. Fan H; Xu Q; Hong H; Wu J J Agric Food Chem; 2018 Oct; 66(43):11347-11354. PubMed ID: 30280571 [TBL] [Abstract][Full Text] [Related]
12. The (193-209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Regazzo D; Mollé D; Gabai G; Tomé D; Dupont D; Leonil J; Boutrou R Mol Nutr Food Res; 2010 Oct; 54(10):1428-35. PubMed ID: 20397193 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. Gleeson JP; Brayden DJ; Ryan SM Eur J Pharm Biopharm; 2017 Jun; 115():276-284. PubMed ID: 28315445 [TBL] [Abstract][Full Text] [Related]
14. Permeability characteristics of polyamines across intestinal epithelium using the Caco-2 monolayer system: comparison between transepithelial flux and mitogen-stimulated uptake into epithelial cells. Milovic V; Faust D; Turchanowa L; Stein J; Caspary WF Nutrition; 2001 Jun; 17(6):462-6. PubMed ID: 11399404 [TBL] [Abstract][Full Text] [Related]
15. Role of Na+ in the asymmetric paracellular transport of 4-phenylazobenzyloxycarbonyl-L-Pro-L-Leu-Gly-L-Pro-D-Arg across rabbit colonic segments and Caco-2 cell monolayers. Yen WC; Lee VH J Pharmacol Exp Ther; 1995 Oct; 275(1):114-9. PubMed ID: 7562538 [TBL] [Abstract][Full Text] [Related]
16. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption. Thwaites DT; Hirst BH; Simmons NL Br J Pharmacol; 1994 Nov; 113(3):1050-6. PubMed ID: 7858848 [TBL] [Abstract][Full Text] [Related]
17. Structural Design of Oligopeptides for Intestinal Transport Model. Hong SM; Tanaka M; Koyanagi R; Shen W; Matsui T J Agric Food Chem; 2016 Mar; 64(10):2072-9. PubMed ID: 26924013 [TBL] [Abstract][Full Text] [Related]
18. Transport Study of Egg-Derived Antihypertensive Peptides (LKP and IQW) Using Caco-2 and HT29 Coculture Monolayers. Xu Q; Fan H; Yu W; Hong H; Wu J J Agric Food Chem; 2017 Aug; 65(34):7406-7414. PubMed ID: 28782363 [TBL] [Abstract][Full Text] [Related]
19. Carbapenem antibiotics inhibit valproic acid transport in Caco-2 cell monolayers. Torii M; Takiguchi Y; Izumi M; Fukushima T; Yokota M Int J Pharm; 2002 Feb; 233(1-2):253-6. PubMed ID: 11897429 [TBL] [Abstract][Full Text] [Related]
20. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Lebreton C; Ménard S; Abed J; Moura IC; Coppo R; Dugave C; Monteiro RC; Fricot A; Traore MG; Griffin M; Cellier C; Malamut G; Cerf-Bensussan N; Heyman M Gastroenterology; 2012 Sep; 143(3):698-707.e4. PubMed ID: 22750506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]