These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 9214508)

  • 1. A structural basis for mutational inactivation of the tumour suppressor Smad4.
    Shi Y; Hata A; Lo RS; Massagué J; Pavletich NP
    Nature; 1997 Jul; 388(6637):87-93. PubMed ID: 9214508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DPC4 (SMAD4) mediates transforming growth factor-beta1 (TGF-beta1) induced growth inhibition and transcriptional response in breast tumour cells.
    de Winter JP; Roelen BA; ten Dijke P; van der Burg B; van den Eijnden-van Raaij AJ
    Oncogene; 1997 Apr; 14(16):1891-9. PubMed ID: 9150356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional mapping of the MH1 DNA-binding domain of DPC4/SMAD4.
    Jones JB; Kern SE
    Nucleic Acids Res; 2000 Jun; 28(12):2363-8. PubMed ID: 10871368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4.
    Lin X; Liang M; Liang YY; Brunicardi FC; Melchior F; Feng XH
    J Biol Chem; 2003 May; 278(21):18714-9. PubMed ID: 12621041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes.
    Liu F; Pouponnot C; Massagué J
    Genes Dev; 1997 Dec; 11(23):3157-67. PubMed ID: 9389648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway.
    Xu J; Attisano L
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4820-5. PubMed ID: 10781087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4.
    Hata A; Lo RS; Wotton D; Lagna G; Massagué J
    Nature; 1997 Jul; 388(6637):82-7. PubMed ID: 9214507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential ubiquitination defines the functional status of the tumor suppressor Smad4.
    Morén A; Hellman U; Inada Y; Imamura T; Heldin CH; Moustakas A
    J Biol Chem; 2003 Aug; 278(35):33571-82. PubMed ID: 12794086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a transcriptionally active Smad4 fragment.
    Qin B; Lam SS; Lin K
    Structure; 1999 Dec; 7(12):1493-503. PubMed ID: 10647180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations of the DPC4/Smad4 gene in biliary tract carcinoma.
    Hahn SA; Bartsch D; Schroers A; Galehdari H; Becker M; Ramaswamy A; Schwarte-Waldhoff I; Maschek H; Schmiegel W
    Cancer Res; 1998 Mar; 58(6):1124-6. PubMed ID: 9515793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells.
    De Bosscher K; Hill CS; Nicolás FJ
    Biochem J; 2004 Apr; 379(Pt 1):209-16. PubMed ID: 14715079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity.
    Xiao Z; Latek R; Lodish HF
    Oncogene; 2003 Feb; 22(7):1057-69. PubMed ID: 12592392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DPC4/SMAD4 gene alterations in human cancer, and their functional implications.
    Schutte M
    Ann Oncol; 1999; 10 Suppl 4():56-9. PubMed ID: 10436786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of both alleles of the DPC4/SMAD4 gene in advanced colorectal cancers: identification of seven novel somatic mutations in tumors from Japanese patients.
    Koyama M; Ito M; Nagai H; Emi M; Moriyama Y
    Mutat Res; 1999 Aug; 406(2-4):71-7. PubMed ID: 10479724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling.
    Wu JW; Hu M; Chai J; Seoane J; Huse M; Li C; Rigotti DJ; Kyin S; Muir TW; Fairman R; Massagué J; Shi Y
    Mol Cell; 2001 Dec; 8(6):1277-89. PubMed ID: 11779503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and mutational analysis of the DCC, DPC4, and MADR2/JV18-1 genes in neuroblastoma.
    Kong XT; Choi SH; Inoue A; Xu F; Chen T; Takita J; Yokota J; Bessho F; Yanagisawa M; Hanada R; Yamamoto K; Hayashi Y
    Cancer Res; 1997 Sep; 57(17):3772-8. PubMed ID: 9288786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways.
    Lagna G; Hata A; Hemmati-Brivanlou A; Massagué J
    Nature; 1996 Oct; 383(6603):832-6. PubMed ID: 8893010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear localization of Dpc4 (Madh4, Smad4) in colorectal carcinomas and relation to mismatch repair/transforming growth factor-beta receptor defects.
    Montgomery E; Goggins M; Zhou S; Argani P; Wilentz R; Kaushal M; Booker S; Romans K; Bhargava P; Hruban R; Kern S
    Am J Pathol; 2001 Feb; 158(2):537-42. PubMed ID: 11159190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4.
    Wu RY; Zhang Y; Feng XH; Derynck R
    Mol Cell Biol; 1997 May; 17(5):2521-8. PubMed ID: 9111321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of functional domains within Smad4/DPC4.
    de Caestecker MP; Hemmati P; Larisch-Bloch S; Ajmera R; Roberts AB; Lechleider RJ
    J Biol Chem; 1997 May; 272(21):13690-6. PubMed ID: 9153220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.