These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9214578)

  • 1. Effect of oxidative stress on membrane structure: small-angle X-ray diffraction analysis.
    Mason RP; Walter MF; Mason PE
    Free Radic Biol Med; 1997; 23(3):419-25. PubMed ID: 9214578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane peroxidative damage enhancement by the ether lipid class of antineoplastic agents.
    Wagner BA; Buettner GR; Burns CP
    Cancer Res; 1992 Nov; 52(21):6045-51. PubMed ID: 1394229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidant and cytoprotective activities of the calcium channel blocker mibefradil.
    Mason RP; Mak IT; Walter MF; Tulenko TN; Mason PE
    Biochem Pharmacol; 1998 Jun; 55(11):1843-52. PubMed ID: 9714303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid peroxidation induces cholesterol domain formation in model membranes.
    Jacob RF; Mason RP
    J Biol Chem; 2005 Nov; 280(47):39380-7. PubMed ID: 16195227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes.
    Wratten ML; van Ginkel G; van't Veld AA; Bekker A; van Faassen EE; Sevanian A
    Biochemistry; 1992 Nov; 31(44):10901-7. PubMed ID: 1329957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray diffraction analysis of brain lipid membrane structure in Alzheimer's disease and beta-amyloid peptide interactions.
    Mason RP; Shoemaker WJ; Shajenko L; Herbette LG
    Ann N Y Acad Sci; 1993 Sep; 695():54-8. PubMed ID: 8239313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alzheimer's disease amyloid beta peptide 25-35 inhibits lipid peroxidation as a result of its membrane interactions.
    Walter MF; Mason PE; Mason RP
    Biochem Biophys Res Commun; 1997 Apr; 233(3):760-4. PubMed ID: 9168929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by (2)H NMR and molecular dynamics simulations.
    Huber T; Rajamoorthi K; Kurze VF; Beyer K; Brown MF
    J Am Chem Soc; 2002 Jan; 124(2):298-309. PubMed ID: 11782182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose promotes membrane cholesterol crystalline domain formation by lipid peroxidation.
    Self-Medlin Y; Byun J; Jacob RF; Mizuno Y; Mason RP
    Biochim Biophys Acta; 2009 Jun; 1788(6):1398-403. PubMed ID: 19376082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential membrane interactions of calcium channel blockers. Implications for antioxidant activity.
    Mason RP; Trumbore MW
    Biochem Pharmacol; 1996 Mar; 51(5):653-60. PubMed ID: 8615902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis.
    McNulty HP; Byun J; Lockwood SF; Jacob RF; Mason RP
    Biochim Biophys Acta; 2007 Jan; 1768(1):167-74. PubMed ID: 17070769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atherosclerosis alters the composition, structure and function of arterial smooth muscle cell plasma membranes.
    Chen M; Mason RP; Tulenko TN
    Biochim Biophys Acta; 1995 Oct; 1272(2):101-12. PubMed ID: 7548233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (DOPC) bilayers by x-ray diffraction using specific bromination of the double-bonds: effect of hydration.
    Hristova K; White SH
    Biophys J; 1998 May; 74(5):2419-33. PubMed ID: 9591668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of polymerizable lipid bilayers IV. Mixtures of long chain diacetylenic and short chain saturated phosphatidylcholines and analogous asymmetric isomers.
    Rhodes DG; Singh A
    Chem Phys Lipids; 1991 Oct; 59(3):215-24. PubMed ID: 1804565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stalk formation as a function of lipid composition studied by X-ray reflectivity.
    Khattari Z; Köhler S; Xu Y; Aeffner S; Salditt T
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):41-50. PubMed ID: 25261611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration and steric pressures between phospholipid bilayers.
    McIntosh TJ; Simon SA
    Annu Rev Biophys Biomol Struct; 1994; 23():27-51. PubMed ID: 7919783
    [No Abstract]   [Full Text] [Related]  

  • 17. Molecular volumes of phospholipids and glycolipids in membranes.
    Marsh D
    Chem Phys Lipids; 2010 Sep; 163(7):667-77. PubMed ID: 20599539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unsaturated lipids protect the integral membrane peptide gramicidin A from singlet oxygen.
    Rokitskaya TI; Kotova EA; Agapov II; Moisenovich MM; Antonenko YN
    FEBS Lett; 2014 May; 588(9):1590-5. PubMed ID: 24613917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol.
    Pitman MC; Suits F; Mackerell AD; Feller SE
    Biochemistry; 2004 Dec; 43(49):15318-28. PubMed ID: 15581344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of K562 and HL-60 cells to edelfosine, an ether lipid drug, correlates with production of reactive oxygen species.
    Wagner BA; Buettner GR; Oberley LW; Burns CP
    Cancer Res; 1998 Jul; 58(13):2809-16. PubMed ID: 9661895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.