These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 9214583)

  • 41. [The influence of uranyl in nanomolar concentrations on erythrocyte sensitivity (in vitro) to factors inducing acute oxidative stress].
    Shevchenko OG
    Radiats Biol Radioecol; 2014; 54(4):377-84. PubMed ID: 25775826
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitroxides inhibit peroxyl radical-mediated DNA scission and enzyme inactivation.
    Offer T; Samuni A
    Free Radic Biol Med; 2002 May; 32(9):872-81. PubMed ID: 11978488
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thiols are main determinants of total antioxidant capacity of cellular homogenates.
    Balcerczyk A; Bartosz G
    Free Radic Res; 2003 May; 37(5):537-41. PubMed ID: 12797475
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Oxidative damage does not alter membrane phospholipid asymmetry in human erythrocytes.
    de Jong K; Geldwerth D; Kuypers FA
    Biochemistry; 1997 Jun; 36(22):6768-76. PubMed ID: 9184159
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydroperoxide-induced radical production in liver mitochondria.
    Kennedy CH; Pryor WA; Winston GW; Church DF
    Biochem Biophys Res Commun; 1986 Dec; 141(3):1123-9. PubMed ID: 3028386
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electron spin resonance spectroscopy of oxygen radicals generated by synthetic fecapentaene-12 and reduction of fecapentaene mutagenicity to Salmonella typhimurium by hydroxyl radical scavenging.
    de Kok TM; van Maanen JM; Lankelma J; ten Hoor F; Kleinjans JC
    Carcinogenesis; 1992 Jul; 13(7):1249-55. PubMed ID: 1322251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of membrane protein sulfhydryl groups in hydrogen peroxide-mediated membrane damage in human erythrocytes.
    Snyder LM; Fortier NL; Leb L; McKenney J; Trainor J; Sheerin H; Mohandas N
    Biochim Biophys Acta; 1988 Jan; 937(2):229-40. PubMed ID: 3337802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydroperoxides selectively inhibit human erythrocyte membrane enzymes.
    Moore RB; Brummitt ML; Mankad VN
    Arch Biochem Biophys; 1989 Sep; 273(2):527-34. PubMed ID: 2528325
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of oxidative damage of membrane protein thiol groups on erythrocyte membrane viscoelasticities.
    Wang X; Wu Z; Song G; Wang H; Long M; Cai S
    Clin Hemorheol Microcirc; 1999; 21(2):137-46. PubMed ID: 10599597
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein-specific S-thiolation in human endothelial cells during oxidative stress.
    Schuppe I; Moldéus P; Cotgreave IA
    Biochem Pharmacol; 1992 Nov; 44(9):1757-64. PubMed ID: 1449533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of cupric ions on the permeability of erythrocyte membrane to non-electrolyte spin labels.
    Gwozdzinski K
    Physiol Chem Phys Med NMR; 1985; 17(4):431-4. PubMed ID: 3014577
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acetylcholinesterase activity of normal and diabetic human erythrocyte membranes: the effect of oxidative agents.
    Krajewska E; Zavodnik I; Kluska B; Szosland K; Bryszewska M
    Biochem Mol Biol Int; 1997 Jun; 42(1):203-10. PubMed ID: 9192101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of mitochondrial respiratory stimulation on membrane lipids and proteins: an electron paramagnetic resonance investigation.
    Gabbita SP; Subramaniam R; Allouch F; Carney JM; Butterfield DA
    Biochim Biophys Acta; 1998 Jul; 1372(2):163-73. PubMed ID: 9675268
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spin-labeled erythrocyte membranes: direct identification of nitroxide-conjugated proteins.
    Barber MJ; Solomonson LP; Eichler DC
    Biochem Biophys Res Commun; 1985 Mar; 127(3):793-8. PubMed ID: 2985057
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The use of 2,2,6,6-tetramethyl-4-maleimido-piperidin-1-oxyl in electron paramagnetic resonance spin label studies of drug interactions with erythrocyte membranes.
    Hornblow HM; Laverty R; Logan BJ; Peake BM
    J Pharmacol Methods; 1985 Nov; 14(3):229-41. PubMed ID: 2997549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Increase in gamma-glutamyltransferase by glutathione depletion in rat type II pneumocytes.
    van Klaveren RJ; Hoet PH; Pype JL; Demedts M; Nemery B
    Free Radic Biol Med; 1997; 22(3):525-34. PubMed ID: 8981045
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Free radical involvement in the oxidative phenomena induced by tert-butyl hydroperoxide in erythrocytes.
    Thornalley PJ; Trotta RJ; Stern A
    Biochim Biophys Acta; 1983 Aug; 759(1-2):16-22. PubMed ID: 6309246
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oscillations in bovine erythrocyte membrane free thiols.
    Gaczyńska M
    Cytobios; 1987; 51(205):71-9. PubMed ID: 3652737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generation of free radicals from hydrogen peroxide and lipid hydroperoxides in the presence of Cr(III).
    Shi X; Dalal NS; Kasprzak KS
    Arch Biochem Biophys; 1993 Apr; 302(1):294-9. PubMed ID: 8385901
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Membrane protein alterations in rodent erythrocytes and synaptosomes due to aging and hyperoxia.
    Hensley K; Howard BJ; Carney JM; Butterfield DA
    Biochim Biophys Acta; 1995 Apr; 1270(2-3):203-6. PubMed ID: 7727544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.