These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9214821)

  • 21. Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation.
    Sel D; Mazeres S; Teissie J; Miklavcic D
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1221-32. PubMed ID: 14619992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Impedance of cochlear implant electrode array in scalae tympani].
    Du Q; Wang ZM
    Zhonghua Yi Xue Za Zhi; 2008 Dec; 88(46):3302-4. PubMed ID: 19159560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A solution method for the determination of cardiac potential distributions with an alternating current source.
    Johnston BM; Johnston PR; Kilpatrick D
    Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):223-33. PubMed ID: 18568820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic current density of the disk electrode double-layer.
    Behrend MR; Ahuja AK; Weiland JD
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1056-62. PubMed ID: 18334397
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinguishability for magnetic resonance-electrical impedance tomography (MR-EIT).
    Altunel H; Eyüboğlu BM; Köksal A
    Phys Med Biol; 2007 Jan; 52(2):375-87. PubMed ID: 17202621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid assessment of electrode characteristics for impedance imaging.
    Newell JC; Isaacson D; Gisser DG
    IEEE Trans Biomed Eng; 1990 Jul; 37(7):735-8. PubMed ID: 2394462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head.
    Haueisen J; Ramon C; Eiselt M; Brauer H; Nowak H
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):727-35. PubMed ID: 9254986
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new method for electric impedance imaging using an eddy current with a tetrapolar circuit.
    Ahsan-Ul-Ambia ; Toda S; Takemae T; Kosugi Y; Hongo M
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):400-6. PubMed ID: 19272885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis.
    Datta A; Elwassif M; Battaglia F; Bikson M
    J Neural Eng; 2008 Jun; 5(2):163-74. PubMed ID: 18441418
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integral equation model for intracardiac electrogram sensing.
    Sun W; Min X
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1237-42. PubMed ID: 9401223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimum design of electrode structure and parameters in electrical impedance tomography.
    Yan W; Hong S; Chaoshi R
    Physiol Meas; 2006 Mar; 27(3):291-306. PubMed ID: 16462015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro measurement and characterization of current density profiles produced by non-recessed, simple recessed, and radially varying recessed stimulating electrodes.
    Suesserman MF; Spelman FA; Rubinstein JT
    IEEE Trans Biomed Eng; 1991 May; 38(5):401-8. PubMed ID: 1874521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multi-channel stimulator and electrode array providing a rotating current whirlpool for electrical stimulation of wounds.
    Petrofsky J; Suh HJ; Fish A; Hernandez V; Abdo A; Collins K; Mendoza E; Yang TN
    J Med Eng Technol; 2008; 32(5):371-84. PubMed ID: 18821415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tri-polar concentric ring electrode development for laplacian electroencephalography.
    Besio WG; Koka K; Aakula R; Dai W
    IEEE Trans Biomed Eng; 2006 May; 53(5):926-33. PubMed ID: 16686415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The contribution of the lungs to thoracic impedance measurements: a simulation study based on a high resolution finite difference model.
    Yang F; Patterson RP
    Physiol Meas; 2007 Jul; 28(7):S153-61. PubMed ID: 17664633
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite element analyses of uniform current density electrodes for radio-frequency cardiac ablation.
    Tungjitkusolmun S; Woo EJ; Cao H; Tsai JZ; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2000 Jan; 47(1):32-40. PubMed ID: 10646277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Correction of electrode polarization contributions to the dielectric properties of normal and cancerous breast tissues at audio/radiofrequencies.
    Stoneman MR; Kosempa M; Gregory WD; Gregory CW; Marx JJ; Mikkelson W; Tjoe J; Raicu V
    Phys Med Biol; 2007 Nov; 52(22):6589-604. PubMed ID: 17975285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of electrode array for impedance measurement of lesions in arteries.
    Cho S; Thielecke H
    Physiol Meas; 2005 Apr; 26(2):S19-26. PubMed ID: 15798232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of the deposited power distribution inside a layered lossy medium irradiated by a coupled system of concentrically placed waveguide applicators.
    Nikita KS; Maratos NG; Uzunoglu NK
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):909-20. PubMed ID: 9644900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.