These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9214839)

  • 1. Superconducting receiver coils for sodium magnetic resonance imaging.
    Miller JR; Zhang K; Ma QY; Mun IK; Jung KJ; Katz J; Face DW; Kountz DJ
    IEEE Trans Biomed Eng; 1996 Dec; 43(12):1197-9. PubMed ID: 9214839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of large-size superconducting coil in 0.21T MRI system.
    Lee KH; Cheng MC; Chan KC; Wong KK; Yeung SS; Lee KC; Ma QY; Yang ES
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):2024-30. PubMed ID: 15536904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronics for a high temperature superconducting receiver system for magnetic resonance microimaging.
    Black RD; Roemer PB; Mueller OM
    IEEE Trans Biomed Eng; 1994 Feb; 41(2):195-7. PubMed ID: 8026853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gradient coil design using Bi-2223 high temperature superconducting tape for magnetic resonance imaging.
    Yuan J; Shen GX
    Med Eng Phys; 2007 May; 29(4):442-8. PubMed ID: 16875861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.
    Ginefri JC; Poirier-Quinot M; Girard O; Darrasse L
    Methods; 2007 Sep; 43(1):54-67. PubMed ID: 17720564
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 128-channel body MRI with a flexible high-density receiver-coil array.
    Hardy CJ; Giaquinto RO; Piel JE; Rohling KW; Marinelli L; Blezek DJ; Fiveland EW; Darrow RD; Foo TK
    J Magn Reson Imaging; 2008 Nov; 28(5):1219-25. PubMed ID: 18972330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of the signal-to-noise ratio for simple surface coils and arrays of coils.
    Wang J; Reykowski A; Dickas J
    IEEE Trans Biomed Eng; 1995 Sep; 42(9):908-17. PubMed ID: 7558065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryogenic receive coil and low noise preamplifier for MRI at 0.01T.
    Resmer F; Seton HC; Hutchison JM
    J Magn Reson; 2010 Mar; 203(1):57-65. PubMed ID: 20031458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superconducting RF coils for clinical MR imaging at low field.
    Ma QY; Chan KC; Kacher DF; Gao E; Chow MS; Wong KK; Xu H; Yang ES; Young GS; Miller JR; Jolesz FA
    Acad Radiol; 2003 Sep; 10(9):978-87. PubMed ID: 13678086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of a miniature high-temperature superconducting (HTS) surface coil for in vivo microimaging of the mouse in a standard 1.5T clinical whole-body scanner.
    Poirier-Quinot M; Ginefri JC; Girard O; Robert P; Darrasse L
    Magn Reson Med; 2008 Oct; 60(4):917-27. PubMed ID: 18816812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental development of a petal resonator surface coil.
    Rodríguez AO; Hidalgo SS; Rojas R; Barrios FA
    Magn Reson Imaging; 2005 Dec; 23(10):1027-33. PubMed ID: 16376189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems.
    Hinton DP; Wald LL; Pitts J; Schmitt F
    Invest Radiol; 2003 Jul; 38(7):436-42. PubMed ID: 12821858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved SNR of phased-array PERES coils via simulation study.
    Rodríguez AO; Medina L
    Phys Med Biol; 2005 Sep; 50(18):N215-25. PubMed ID: 16148389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo MR imaging of the human skin at subnanoliter resolution using a superconducting surface coil at 1.5 Tesla.
    Laistler E; Poirier-Quinot M; Lambert SA; Dubuisson RM; Girard OM; Moser E; Darrasse L; Ginefri JC
    J Magn Reson Imaging; 2015 Feb; 41(2):496-504. PubMed ID: 24382749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-temperature superconducting radiofrequency probe for magnetic resonance imaging applications operated below ambient pressure in a simple liquid-nitrogen cryostat.
    Lambert S; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2013 May; 84(5):054701. PubMed ID: 23742569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils.
    Gensanne D; Josse G; Lagarde JM; Vincensini D
    Phys Med Biol; 2006 Jun; 51(11):2843-55. PubMed ID: 16723770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal-to-noise ratio comparison of phased-array vs. implantable coil for rat spinal cord MRI.
    Yung AC; Kozlowski P
    Magn Reson Imaging; 2007 Oct; 25(8):1215-21. PubMed ID: 17905249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin film high temperature superconducting RF coils for low field MRI.
    van Heteren JG; James TW; Bourne LC
    Magn Reson Med; 1994 Sep; 32(3):396-400. PubMed ID: 7984072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method.
    Wang S; Duyn JH
    Phys Med Biol; 2006 Jun; 51(12):3211-29. PubMed ID: 16757872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.