BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 9215683)

  • 1. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases.
    Pearson CE; Ewel A; Acharya S; Fishel RA; Sinden RR
    Hum Mol Genet; 1997 Jul; 6(7):1117-23. PubMed ID: 9215683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slipped (CTG).(CAG) repeats of the myotonic dystrophy locus: surface probing with anti-DNA antibodies.
    Tam M; Erin Montgomery S; Kekis M; Stollar BD; Price GB; Pearson CE
    J Mol Biol; 2003 Sep; 332(3):585-600. PubMed ID: 12963369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions.
    Pearson CE; Tam M; Wang YH; Montgomery SE; Dar AC; Cleary JD; Nichol K
    Nucleic Acids Res; 2002 Oct; 30(20):4534-47. PubMed ID: 12384601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.
    Pearson CE; Wang YH; Griffith JD; Sinden RR
    Nucleic Acids Res; 1998 Feb; 26(3):816-23. PubMed ID: 9443975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair.
    Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF
    DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the nucleotide excision repair protein UvrA in instability of CAG*CTG repeat sequences in Escherichia coli.
    Oussatcheva EA; Hashem VI; Zou Y; Sinden RR; Potaman VN
    J Biol Chem; 2001 Aug; 276(33):30878-84. PubMed ID: 11413147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
    Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE
    DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome.
    Slean MM; Reddy K; Wu B; Nichol Edamura K; Kekis M; Nelissen FH; Aspers RL; Tessari M; Schärer OD; Wijmenga SS; Pearson CE
    Biochemistry; 2013 Feb; 52(5):773-85. PubMed ID: 23339280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation.
    Pearson CE; Eichler EE; Lorenzetti D; Kramer SF; Zoghbi HY; Nelson DL; Sinden RR
    Biochemistry; 1998 Feb; 37(8):2701-8. PubMed ID: 9485421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.
    Owen BA; Yang Z; Lai M; Gajec M; Badger JD; Hayes JJ; Edelmann W; Kucherlapati R; Wilson TM; McMurray CT
    Nat Struct Mol Biol; 2005 Aug; 12(8):663-70. PubMed ID: 16025128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice.
    Manley K; Shirley TL; Flaherty L; Messer A
    Nat Genet; 1999 Dec; 23(4):471-3. PubMed ID: 10581038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of slipped-DNAs at the trinucleotide repeats of the myotonic dystrophy type I disease locus in patient tissues.
    Axford MM; Wang YH; Nakamori M; Zannis-Hadjopoulos M; Thornton CA; Pearson CE
    PLoS Genet; 2013; 9(12):e1003866. PubMed ID: 24367268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis.
    Guo J; Gu L; Leffak M; Li GM
    Cell Res; 2016 Jul; 26(7):775-86. PubMed ID: 27255792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disease-associated repeat instability and mismatch repair.
    Schmidt MHM; Pearson CE
    DNA Repair (Amst); 2016 Feb; 38():117-126. PubMed ID: 26774442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MSH2 ATPase domain mutation affects CTG*CAG repeat instability in transgenic mice.
    Tomé S; Holt I; Edelmann W; Morris GE; Munnich A; Pearson CE; Gourdon G
    PLoS Genet; 2009 May; 5(5):e1000482. PubMed ID: 19436705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy.
    Timchenko LT; Timchenko NA; Caskey CT; Roberts R
    Hum Mol Genet; 1996 Jan; 5(1):115-21. PubMed ID: 8789448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large expansion of CTG•CAG repeats is exacerbated by MutSβ in human cells.
    Nakatani R; Nakamori M; Fujimura H; Mochizuki H; Takahashi MP
    Sci Rep; 2015 Jun; 5():11020. PubMed ID: 26047474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.