These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 9216139)

  • 21. Multiregion bicentric-spheres models of the head for the simulation of bioelectric phenomena.
    Vatta F; Bruno P; Inchingolo P
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):384-9. PubMed ID: 15759568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
    Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS
    Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the numerical accuracy of the boundary element method.
    Meijs JW; Weier OW; Peters MJ; van Oosterom A
    IEEE Trans Biomed Eng; 1989 Oct; 36(10):1038-49. PubMed ID: 2793196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methods for high-resolution anisotropic finite element modeling of the human head: automatic MR white matter anisotropy-adaptive mesh generation.
    Lee WH; Kim TS
    Med Eng Phys; 2012 Jan; 34(1):85-98. PubMed ID: 21820347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.
    Miranda PC; Hallett M; Basser PJ
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1074-85. PubMed ID: 12943275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of the boundary element method to the solution of anisotropic electromagnetic problems.
    Zhou H; van Oosterom A
    Med Biol Eng Comput; 1994 Jul; 32(4):399-405. PubMed ID: 7967804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eccentric spheres models of the head.
    Cuffin BN
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):871-8. PubMed ID: 1743735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient algorithm for computing multishell spherical volume conductor models in EEG dipole source localization.
    Sun M
    IEEE Trans Biomed Eng; 1997 Dec; 44(12):1243-52. PubMed ID: 9401224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models.
    Van Uitert R; Johnson C; Zhukov L
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2129-37. PubMed ID: 15605860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An equivalent current source model and laplacian weighted minimum norm current estimates of brain electrical activity.
    He B; Yao D; Lian J; Wu D
    IEEE Trans Biomed Eng; 2002 Apr; 49(4):277-88. PubMed ID: 11942719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The influence of mutual arrangement of the electric dipole and the spatial nonuniformity of brain electrical conductivity on the solution of the direct task of electroencephalography using the method of finite elements].
    Stavtsev AIu; Ushakov VL
    Biofizika; 2010; 55(2):311-6. PubMed ID: 20429287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Source parameter estimation in inhomogeneous volume conductors of arbitrary shape.
    Oostendorp TF; van Oosterom A
    IEEE Trans Biomed Eng; 1989 Mar; 36(3):382-91. PubMed ID: 2921073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The combination method: a numerical technique for electrocardiographic calculations.
    Stanley PC; Pilkington TC
    IEEE Trans Biomed Eng; 1989 Apr; 36(4):456-61. PubMed ID: 2714825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational aspects of finite element modeling in EEG source localization.
    Awada KA; Jackson DR; Williams JT; Wilton DR; Baumann SB; Papanicolaou AC
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):736-52. PubMed ID: 9254987
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies.
    Stoykov NS; Kuiken TA; Lowery MM; Taflove A
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1100-7. PubMed ID: 12943277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A numerical method for the computation of induced currents inside 3-D heterogeneous biological bodies by ELF--LF electric fields.
    Chuang HR; Chen KM
    IEEE Trans Biomed Eng; 1989 Jun; 36(6):628-34. PubMed ID: 2731949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model.
    Awada KA; Jackson DR; Baumann SB; Williams JT; Wilton DR; Fink PW; Prasky BR
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1135-45. PubMed ID: 9735563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of holes on EEG forward solutions using a realistic geometry head model.
    Li J; Wang K; Zhu S; He B
    J Neural Eng; 2007 Sep; 4(3):197-204. PubMed ID: 17873421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-shell head model constructed from scalp geometry for electroencephalogram dipole localization.
    Haque HA; Musha T; Nakajima M
    Front Med Biol Eng; 1999; 9(4):295-304. PubMed ID: 10718667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Application of boundary element method for more accurate localization of EEG dipole sources].
    Tkachenko ON; Frolov AA; Verkhliutov VM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(2):247-54. PubMed ID: 18661787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.