These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 9216143)
41. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750 [TBL] [Abstract][Full Text] [Related]
42. Validity of the local nonlinear arterial flow theory: influence of the upstream and downstream conditions. Bensalah A; Flaud P Med Eng Phys; 2008 Nov; 30(9):1159-67. PubMed ID: 18400549 [TBL] [Abstract][Full Text] [Related]
43. Design of vascular networks: a mathematical model approach. Yang J; Wang Y Int J Numer Method Biomed Eng; 2013 Apr; 29(4):515-29. PubMed ID: 23225739 [TBL] [Abstract][Full Text] [Related]
44. Effect of length on the fundamental resonance frequency of arterial models having radial dilatation. Wang YY; Lia WC; Hsiu H; Jan MY; Wang WK IEEE Trans Biomed Eng; 2000 Mar; 47(3):313-8. PubMed ID: 10743772 [TBL] [Abstract][Full Text] [Related]
45. A description of arterial wall mechanics using limiting chain extensibility constitutive models. Horgan CO; Saccomandi G Biomech Model Mechanobiol; 2003 Apr; 1(4):251-66. PubMed ID: 14586694 [TBL] [Abstract][Full Text] [Related]
46. An effective fractal-tree closure model for simulating blood flow in large arterial networks. Perdikaris P; Grinberg L; Karniadakis GE Ann Biomed Eng; 2015 Jun; 43(6):1432-42. PubMed ID: 25510364 [TBL] [Abstract][Full Text] [Related]
47. Models of the arterial tree. Westerhof N; Stergiopulos N Stud Health Technol Inform; 2000; 71():65-77. PubMed ID: 10977604 [TBL] [Abstract][Full Text] [Related]
48. Wave intensity amplification and attenuation in non-linear flow: implications for the calculation of local reflection coefficients. Mynard J; Penny DJ; Smolich JJ J Biomech; 2008 Dec; 41(16):3314-21. PubMed ID: 19019371 [TBL] [Abstract][Full Text] [Related]
49. A one-dimensional fluid dynamic model of the systemic arteries. Olufsen MS Stud Health Technol Inform; 2000; 71():79-97. PubMed ID: 10977605 [TBL] [Abstract][Full Text] [Related]
50. Hemodynamic consequences of replacing the aorta by vascular grafts simulated in a mathematical model. Schulz S; Bauernschmitt R; Schwarzhaupt A; Vahl CF; Kiencke U Biomed Sci Instrum; 1997; 34():263-8. PubMed ID: 9603050 [TBL] [Abstract][Full Text] [Related]
51. Introducing mesoscopic information into constitutive equations for arterial walls. Ogden RW; Saccomandi G Biomech Model Mechanobiol; 2007 Sep; 6(5):333-44. PubMed ID: 17124617 [TBL] [Abstract][Full Text] [Related]
52. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation. Gaw RL; Cornish BH; Thomas BJ IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):721-7. PubMed ID: 18270009 [TBL] [Abstract][Full Text] [Related]
53. Development of optimized vascular fractal tree models using level set distance function. Bui AV; Manasseh R; Liffman K; Sutalo ID Med Eng Phys; 2010 Sep; 32(7):790-4. PubMed ID: 20472487 [TBL] [Abstract][Full Text] [Related]
54. Hydraulic input impedance measurements in physical models of the arterial wall. Papageorgiou GL; Jones NB J Biomed Eng; 1989 Nov; 11(6):471-7. PubMed ID: 2811346 [TBL] [Abstract][Full Text] [Related]
55. Scatter in input impedance spectrum may result from the elastic nonlinearity of the arterial wall. Stergiopulos N; Meister JJ; Westerhof N Am J Physiol; 1995 Oct; 269(4 Pt 2):H1490-5. PubMed ID: 7485585 [TBL] [Abstract][Full Text] [Related]
56. Wave transmission and input impedance of a model of skeletal muscle microvasculature. Frasch HF; Kresh JY; Noordergraaf A Ann Biomed Eng; 1994; 22(1):45-57. PubMed ID: 8060026 [TBL] [Abstract][Full Text] [Related]
57. Influence of fractal kinetics on molecular recognition. Savageau MA J Mol Recognit; 1993 Dec; 6(4):149-57. PubMed ID: 7917410 [TBL] [Abstract][Full Text] [Related]
58. Role of tapering in aortic wave reflection: hydraulic and mathematical model study. Segers P; Verdonck P J Biomech; 2000 Mar; 33(3):299-306. PubMed ID: 10673113 [TBL] [Abstract][Full Text] [Related]
59. A model for transport and dispersion in the circulatory system based on the vascular fractal tree. Dokoumetzidis A; Macheras P Ann Biomed Eng; 2003 Mar; 31(3):284-93. PubMed ID: 12680726 [TBL] [Abstract][Full Text] [Related]
60. Quantitative evaluation of arterial pulsatile flow and pressure, applying impedance plethysmography to a human arterial model incorporating anatomical branching and scale. Semnani R; Smith RE Comput Methods Programs Biomed; 1987 Aug; 25(1):13-20. PubMed ID: 3652671 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]