BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 9216150)

  • 1. Analysis of cerebral blood flow autoregulation in neonates.
    Panerai RB; Kelsall AW; Rennie JM; Evans DH
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):779-88. PubMed ID: 9216150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia.
    McCulloch TJ; Turner MJ
    Anesth Analg; 2009 Apr; 108(4):1284-90. PubMed ID: 19299801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wavelet phase synchronization analysis of cerebral blood flow autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):960-8. PubMed ID: 20142164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI).
    Lewis PM; Rosenfeld JV; Diehl RR; Mehdorn HM; Lang EW
    Acta Neurochir (Wien); 2008 Feb; 150(2):139-46; discussion 146-7. PubMed ID: 18213440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral blood flow response and its association with symptoms during orthostatic hypotension.
    Rickards CA; Cohen KD; Bergeron LL; Burton BL; Khatri PJ; Lee CT; Ryan KL; Cooke WH; Doerr DF; Convertino VA
    Aviat Space Environ Med; 2007 Jul; 78(7):653-8. PubMed ID: 17679561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Objective selection of signals for assessment of cerebral blood flow autoregulation in neonates.
    Ramos EG; Simpson DM; Panerai RB; Nadal J; Lopes JM; Evans DH
    Physiol Meas; 2006 Jan; 27(1):35-49. PubMed ID: 16365509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure-velocity relationship.
    Panerai RB; Moody M; Eames PJ; Potter JF
    J Appl Physiol (1985); 2005 Dec; 99(6):2352-62. PubMed ID: 16099892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation.
    Liu J; Simpson DM; Allen R
    Physiol Meas; 2005 Oct; 26(5):725-41. PubMed ID: 16088064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral blood flow velocity response to induced and spontaneous sudden changes in arterial blood pressure.
    Panerai RB; Dawson SL; Eames PJ; Potter JF
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2162-74. PubMed ID: 11299218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple coherence of cerebral blood flow velocity in humans.
    Panerai RB; Eames PJ; Potter JF
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H251-9. PubMed ID: 16489099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cerebral autoregulation in sick newborn infants.
    Boylan GB; Young K; Panerai RB; Rennie JM; Evans DH
    Pediatr Res; 2000 Jul; 48(1):12-7. PubMed ID: 10879794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of dynamic changes in cerebral autoregulation.
    Noack F; Christ M; May SA; Steinmeier R; Morgenstern U
    Biomed Tech (Berl); 2007 Feb; 52(1):31-6. PubMed ID: 17313331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations among critical closing pressure, pulsatility index and cerebrovascular resistance.
    Hsu HY; Chern CM; Kuo JS; Kuo TB; Chen YT; Hu HH
    Ultrasound Med Biol; 2004 Oct; 30(10):1329-35. PubMed ID: 15582232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenging cerebral autoregulation in patients with preganglionic autonomic failure.
    Hetzel A; Reinhard M; Guschlbauer B; Braune S
    Clin Auton Res; 2003 Feb; 13(1):27-35. PubMed ID: 12664245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral autoregulation and ageing.
    Yam AT; Lang EW; Lagopoulos J; Yip K; Griffith J; Mudaliar Y; Dorsch NW
    J Clin Neurosci; 2005 Aug; 12(6):643-6. PubMed ID: 16098757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced cerebral blood flow velocity and impaired cerebral autoregulation in patients with Fabry disease.
    Hilz MJ; Kolodny EH; Brys M; Stemper B; Haendl T; Marthol H
    J Neurol; 2004 May; 251(5):564-70. PubMed ID: 15164189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous influence of blood pressure, PCO2, and PO2 on cerebral blood flow velocity in preterm infants of less than 33 weeks' gestation.
    Menke J; Michel E; Rabe H; Bresser BW; Grohs B; Schmitt RM; Jorch G
    Pediatr Res; 1993 Aug; 34(2):173-7. PubMed ID: 8233721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of dynamic cerebral autoregulation based on spontaneous fluctuations in arterial blood pressure and intracranial pressure.
    Panerai RB; Hudson V; Fan L; Mahony P; Yeoman PM; Hope T; Evans DH
    Physiol Meas; 2002 Feb; 23(1):59-72. PubMed ID: 11876242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early childhood gender differences in anterior and posterior cerebral blood flow velocity and autoregulation.
    Tontisirin N; Muangman SL; Suz P; Pihoker C; Fisk D; Moore A; Lam AM; Vavilala MS
    Pediatrics; 2007 Mar; 119(3):e610-5. PubMed ID: 17283178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic dysfunction affects dynamic cerebral autoregulation during Valsalva maneuver: comparison between healthy and autonomic dysfunction subjects.
    Castro PM; Santos R; Freitas J; Panerai RB; Azevedo E
    J Appl Physiol (1985); 2014 Aug; 117(3):205-13. PubMed ID: 24925980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.