These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 9217963)

  • 1. Genes of human ATP synthase: their roles in physiology and aging.
    Kagawa Y; Hamamoto T; Endo H; Ichida M; Shibui H; Hayakawa M
    Biosci Rep; 1997 Apr; 17(2):115-46. PubMed ID: 9217963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of energy metabolism in human cells in aging and diabetes: FoF(1), mtDNA, UCP, and ROS.
    Kagawa Y; Cha SH; Hasegawa K; Hamamoto T; Endo H
    Biochem Biophys Res Commun; 1999 Dec; 266(3):662-76. PubMed ID: 10603304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations.
    Wallace DC; Ye JH; Neckelmann SN; Singh G; Webster KA; Greenberg BD
    Curr Genet; 1987; 12(2):81-90. PubMed ID: 2896550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning of the beta-subunit of a possible non-F0F1 type ATP synthase from the acidothermophilic archaebacterium, Sulfolobus acidocaldarius.
    Denda K; Konishi J; Oshima T; Date T; Yoshida M
    J Biol Chem; 1988 Nov; 263(33):17251-4. PubMed ID: 2903160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants.
    Santana M; Ionescu MS; Vertes A; Longin R; Kunst F; Danchin A; Glaser P
    J Bacteriol; 1994 Nov; 176(22):6802-11. PubMed ID: 7961438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upstream region of a nuclear gene encoding the alpha-subunit of the human mitochondrial F0F1 ATP synthase.
    Jordan EM; Breen GA
    Biochim Biophys Acta; 1993 Apr; 1173(1):115-7. PubMed ID: 8387339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of mitochondrial ATP synthesis in mammalian cells by transcriptional control.
    Kagawa Y; Ohta S
    Int J Biochem; 1990; 22(3):219-29. PubMed ID: 2185063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic control of oxidative phosphorylation and experimental models of defects.
    Trounce I
    Hum Reprod; 2000 Jul; 15 Suppl 2():18-27. PubMed ID: 11041510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on essential amino acid residues and functional regions of H+-ATPase (F0F1) from Escherichia coli by gene manipulation.
    Noumi T; Takeyama M; Kuki M; Maeda M; Futai M
    Nucleic Acids Symp Ser; 1988; (19):175-8. PubMed ID: 2906427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dose-dependent inhibition of mitochondrial ATP synthase by 17 beta-estradiol.
    Massart F; Paolini S; Piscitelli E; Brandi ML; Solaini G
    Gynecol Endocrinol; 2002 Oct; 16(5):373-7. PubMed ID: 12587531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. F0F1-ATPase genes from an archaebacterium, Methanosarcina barkeri.
    Sumi M; Yohda M; Koga Y; Yoshida M
    Biochem Biophys Res Commun; 1997 Dec; 241(2):427-33. PubMed ID: 9425287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural aspects of proton-pumping ATPases.
    Walker JE; Fearnley IM; Lutter R; Todd RJ; Runswick MJ
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):367-78. PubMed ID: 1970643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA sequence of a gene cluster coding for subunits of the F0 membrane sector of ATP synthase in Rhodospirillum rubrum. Support for modular evolution of the F1 and F0 sectors.
    Falk G; Walker JE
    Biochem J; 1988 Aug; 254(1):109-22. PubMed ID: 2902844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex.
    Deckers-Hebestreit G; Altendorf K
    Annu Rev Microbiol; 1996; 50():791-824. PubMed ID: 8905099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3'-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani.
    Roy A; Ganguly A; BoseDasgupta S; Das BB; Pal C; Jaisankar P; Majumder HK
    Mol Pharmacol; 2008 Nov; 74(5):1292-307. PubMed ID: 18703668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning of genes encoding major two subunits of a eubacterial V-type ATPase from Thermus thermophilus.
    Tsutsumi S; Denda K; Yokoyama K; Oshima T; Date T; Yoshida M
    Biochim Biophys Acta; 1991 Dec; 1098(1):13-20. PubMed ID: 1836357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation.
    Fosslien E
    Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals.
    Zheng J; Ramirez VD
    Br J Pharmacol; 2000 Jul; 130(5):1115-23. PubMed ID: 10882397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Animal models for mitochondrial disease.
    Wallace DC
    Methods Mol Biol; 2002; 197():3-54. PubMed ID: 12013805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.