BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 9217978)

  • 1. Mouse models of human CAG repeat disorders.
    Burright EN; Orr HT; Clark HB
    Brain Pathol; 1997 Jul; 7(3):965-77. PubMed ID: 9217978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuropathology of CAG repeat diseases: review and update of genetic and molecular features.
    Robitaille Y; Lopes-Cendes I; Becher M; Rouleau G; Clark AW
    Brain Pathol; 1997 Jul; 7(3):901-26. PubMed ID: 9217975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trinucleotide repeat disorders in humans: discussions of mechanisms and medical issues.
    Timchenko LT; Caskey CT
    FASEB J; 1996 Dec; 10(14):1589-97. PubMed ID: 9002550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trinucleotide repeats in neurogenetic disorders.
    Paulson HL; Fischbeck KH
    Annu Rev Neurosci; 1996; 19():79-107. PubMed ID: 8833437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinocerebellar ataxia type 1 and Machado-Joseph disease: incidence of CAG expansions among adult-onset ataxia patients from 311 families with dominant, recessive, or sporadic ataxia.
    Ranum LP; Lundgren JK; Schut LJ; Ahrens MJ; Perlman S; Aita J; Bird TD; Gomez C; Orr HT
    Am J Hum Genet; 1995 Sep; 57(3):603-8. PubMed ID: 7668288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The repeat expansion detection method in the analysis of diseases with CAG/CTG repeat expansion: usefulness and limitations.
    Martorell L; Pujana MA; Volpini V; Sanchez A; Joven J; Vilella E; Estivill X
    Hum Mutat; 1997; 10(6):486-8. PubMed ID: 9401013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The advances in research on phosphorylation of polyglutamine disease].
    Zhou YF; Jiang H; Tang JG; Tang BS
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2008 Aug; 25(4):414-7. PubMed ID: 18683139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential pattern in tissue-specific somatic mosaicism of expanded CAG trinucleotide repeats in dentatorubral-pallidoluysian atrophy, Machado-Joseph disease, and X-linked recessive spinal and bulbar muscular atrophy.
    Tanaka F; Sobue G; Doyu M; Ito Y; Yamamoto M; Shimada N; Yamamoto K; Riku S; Hshizume Y; Mitsuma T
    J Neurol Sci; 1996 Jan; 135(1):43-50. PubMed ID: 8926495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical aspects of CAG repeat diseases.
    Nance MA
    Brain Pathol; 1997 Jul; 7(3):881-900. PubMed ID: 9217974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instability of highly expanded CAG repeats in mice transgenic for the Huntington's disease mutation.
    Mangiarini L; Sathasivam K; Mahal A; Mott R; Seller M; Bates GP
    Nat Genet; 1997 Feb; 15(2):197-200. PubMed ID: 9020849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inherited neurodegenerative disorders caused by CAG/polyglutamine tract expansions: symposium introduction.
    La Spada AR; Clark AW
    Brain Pathol; 1997 Jul; 7(3):877-80. PubMed ID: 9217973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mendelian segregation of normal CAG trinucleotide repeat alleles at three autosomal loci.
    MacMillan JC; Voisey J; Healey SC; Martin NG
    J Med Genet; 1999 Mar; 36(3):258-9. PubMed ID: 10204858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of SCA1, DRPLA, MJD, SCA2, and SCA6 CAG repeats in 48 Portuguese ataxia families.
    Silveira I; Coutinho P; Maciel P; Gaspar C; Hayes S; Dias A; Guimarães J; Loureiro L; Sequeiros J; Rouleau GA
    Am J Med Genet; 1998 Mar; 81(2):134-8. PubMed ID: 9613852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CAG/polyglutamine tract diseases: gene products and molecular pathogenesis.
    Koshy BT; Zoghbi HY
    Brain Pathol; 1997 Jul; 7(3):927-42. PubMed ID: 9217976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatic mosaicism of the expanded CAG trinucleotide repeat in mRNAs for the responsible gene of Machado-Joseph disease (MJD), dentatorubral-pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA).
    Ito Y; Tanaka F; Yamamoto M; Doyu M; Nagamatsu M; Riku S; Mitsuma T; Sobue G
    Neurochem Res; 1998 Jan; 23(1):25-32. PubMed ID: 9482263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency of spinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients.
    Silveira I; Lopes-Cendes I; Kish S; Maciel P; Gaspar C; Coutinho P; Botez MI; Teive H; Arruda W; Steiner CE; Pinto-Júnior W; Maciel JA; Jerin S; Sack G; Andermann E; Sudarsky L; Rosenberg R; MacLeod P; Chitayat D; Babul R; Sequeiros J; Rouleau GA
    Neurology; 1996 Jan; 46(1):214-8. PubMed ID: 8559378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease.
    Matilla T; McCall A; Subramony SH; Zoghbi HY
    Ann Neurol; 1995 Jul; 38(1):68-72. PubMed ID: 7611728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanded CAG repeats in spinocerebellar ataxia (SCA1) segregate with distinct haplotypes in South african families.
    Ramesar RS; Bardien S; Beighton P; Bryer A
    Hum Genet; 1997 Jul; 100(1):131-7. PubMed ID: 9225982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence variation and size ranges of CAG repeats in the Machado-Joseph disease, spinocerebellar ataxia type 1 and androgen receptor genes.
    Rubinsztein DC; Leggo J; Coetzee GA; Irvine RA; Buckley M; Ferguson-Smith MA
    Hum Mol Genet; 1995 Sep; 4(9):1585-90. PubMed ID: 8541843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinocerebellar ataxia, type 3 (SCA3) is genetically identical to Machado-Joseph disease (MJD).
    Haberhausen G; Damian MS; Leweke F; Müller U
    J Neurol Sci; 1995 Sep; 132(1):71-5. PubMed ID: 8523034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.