These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 9218437)

  • 1. Elastin degradation by matrix metalloproteinases. Cleavage site specificity and mechanisms of elastolysis.
    Mecham RP; Broekelmann TJ; Fliszar CJ; Shapiro SD; Welgus HG; Senior RM
    J Biol Chem; 1997 Jul; 272(29):18071-6. PubMed ID: 9218437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The structural basis for the elastolytic activity of the 92-kDa and 72-kDa gelatinases. Role of the fibronectin type II-like repeats.
    Shipley JM; Doyle GA; Fliszar CJ; Ye QZ; Johnson LL; Shapiro SD; Welgus HG; Senior RM
    J Biol Chem; 1996 Feb; 271(8):4335-41. PubMed ID: 8626782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human 92- and 72-kilodalton type IV collagenases are elastases.
    Senior RM; Griffin GL; Fliszar CJ; Shapiro SD; Goldberg GI; Welgus HG
    J Biol Chem; 1991 Apr; 266(12):7870-5. PubMed ID: 1850424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of a matrix metalloproteinase-generated aggrecan G1 fragment using monospecific anti-peptide serum.
    Lark MW; Williams H; Hoernner LA; Weidner J; Ayala JM; Harper CF; Christen A; Olszewski J; Konteatis Z; Webber R
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):245-52. PubMed ID: 7717983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitors and specificity of Pseudomonas aeruginosa LasA.
    Kessler E; Safrin M; Abrams WR; Rosenbloom J; Ohman DE
    J Biol Chem; 1997 Apr; 272(15):9884-9. PubMed ID: 9092525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutrophil elastase processing of gelatinase A is mediated by extracellular matrix.
    Rice A; Banda MJ
    Biochemistry; 1995 Jul; 34(28):9249-56. PubMed ID: 7619826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of 92 kDa and 72 kDa progelatinases to insoluble elastin modulates their proteolytic activation.
    Emonard H; Hornebeck W
    Biol Chem; 1997; 378(3-4):265-71. PubMed ID: 9165080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase.
    Gronski TJ; Martin RL; Kobayashi DK; Walsh BC; Holman MC; Huber M; Van Wart HE; Shapiro SD
    J Biol Chem; 1997 May; 272(18):12189-94. PubMed ID: 9115292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of cleavage site specificity of gelatinases A and B using collagenous peptides.
    Xia T; Akers K; Eisen AZ; Seltzer JL
    Biochim Biophys Acta; 1996 Apr; 1293(2):259-66. PubMed ID: 8620038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of peptides resulting from digestion of human skin elastin with elastase.
    Getie M; Schmelzer CE; Neubert RH
    Proteins; 2005 Nov; 61(3):649-57. PubMed ID: 16161116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments.
    Aimes RT; Quigley JP
    J Biol Chem; 1995 Mar; 270(11):5872-6. PubMed ID: 7890717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin).
    Netzel-Arnett S; Sang QX; Moore WG; Navre M; Birkedal-Hansen H; Van Wart HE
    Biochemistry; 1993 Jun; 32(25):6427-32. PubMed ID: 8390857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines.
    Heinz A; Jung MC; Duca L; Sippl W; Taddese S; Ihling C; Rusciani A; Jahreis G; Weiss AS; Neubert RH; Schmelzer CE
    FEBS J; 2010 Apr; 277(8):1939-56. PubMed ID: 20345904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the degradation of human elastin by matrilysin-1.
    Heinz A; Taddese S; Sippl W; Neubert RH; Schmelzer CE
    Biochimie; 2011 Feb; 93(2):187-94. PubMed ID: 20884320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of an alkaline elastase from Myxococcus xanthus.
    Dumont L; Verneuil B; Wallach J; Julien R
    Eur J Biochem; 1994 Aug; 223(3):775-82. PubMed ID: 8055953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence specificities of human fibroblast and neutrophil collagenases.
    Netzel-Arnett S; Fields GB; Birkedal-Hansen H; Van Wart HE
    J Biol Chem; 1991 Apr; 266(11):6747-55. PubMed ID: 1849891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP).
    Murphy G; Cockett MI; Ward RV; Docherty AJ
    Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):277-9. PubMed ID: 1649600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The degradation of human lung elastin by neutrophil proteinases.
    Reilly CF; Travis J
    Biochim Biophys Acta; 1980 Jan; 621(1):147-57. PubMed ID: 6153274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cell-elastin-elastase(s) interacting triade directs elastolysis.
    Hornebeck W; Emonard H
    Front Biosci (Landmark Ed); 2011 Jan; 16(2):707-22. PubMed ID: 21196197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The action of neutrophil serine proteases on elastin and its precursor.
    Heinz A; Jung MC; Jahreis G; Rusciani A; Duca L; Debelle L; Weiss AS; Neubert RH; Schmelzer CE
    Biochimie; 2012 Jan; 94(1):192-202. PubMed ID: 22030899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.