These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 9218446)

  • 1. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.
    Krupnick JG; Gurevich VV; Benovic JL
    J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light scattering methods to monitor interactions between rhodopsin-containing membranes and soluble proteins.
    Heck M; Pulvermüller A; Hofmann KP
    Methods Enzymol; 2000; 315():329-47. PubMed ID: 10736711
    [No Abstract]   [Full Text] [Related]  

  • 3. Heterologous expression and reconstitution of rhodopsin with rhodopsin kinase and arrestin.
    Osawa S; Raman D; Weiss ER
    Methods Enzymol; 2000; 315():411-22. PubMed ID: 10736717
    [No Abstract]   [Full Text] [Related]  

  • 4. Binding of GTP to transducin is not inhibited by arrestin and phosphorylated rhodopsin.
    Fukada Y; Yoshizawa T; Saito T; Ohguro H; Akino T
    FEBS Lett; 1990 Feb; 261(2):419-22. PubMed ID: 2311767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deactivation of photoactivated rhodopsin by rhodopsin-kinase and arrestin.
    Kühn H; Wilden U
    J Recept Res; 1987; 7(1-4):283-98. PubMed ID: 3040978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodopsin phosphorylation sites and their role in arrestin binding.
    Zhang L; Sports CD; Osawa S; Weiss ER
    J Biol Chem; 1997 Jun; 272(23):14762-8. PubMed ID: 9169442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The selectivity of visual arrestin for light-activated phosphorhodopsin is controlled by multiple nonredundant mechanisms.
    Gurevich VV
    J Biol Chem; 1998 Jun; 273(25):15501-6. PubMed ID: 9624137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction between photoactivated rhodopsin and its kinase: stability and kinetics of complex formation.
    Pulvermüller A; Palczewski K; Hofmann KP
    Biochemistry; 1993 Dec; 32(51):14082-8. PubMed ID: 8260489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transducin inhibition of light-dependent rhodopsin phosphorylation: evidence for beta gamma subunit interaction with rhodopsin.
    Kelleher DJ; Johnson GL
    Mol Pharmacol; 1988 Oct; 34(4):452-60. PubMed ID: 3050446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion.
    Gray-Keller MP; Detwiler PB; Benovic JL; Gurevich VV
    Biochemistry; 1997 Jun; 36(23):7058-63. PubMed ID: 9188704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin.
    Pulvermüller A; Schroder K; Fischer T; Hofmann KP
    J Biol Chem; 2000 Dec; 275(48):37679-85. PubMed ID: 10969086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin.
    Rim J; Oprian DD
    Biochemistry; 1995 Sep; 34(37):11938-45. PubMed ID: 7547930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems.
    Lohse MJ; Andexinger S; Pitcher J; Trukawinski S; Codina J; Faure JP; Caron MG; Lefkowitz RJ
    J Biol Chem; 1992 Apr; 267(12):8558-64. PubMed ID: 1349018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of purified recombinant beta-arrestin to guanine-nucleotide-binding-protein-coupled receptors.
    Söhlemann P; Hekman M; Puzicha M; Buchen C; Lohse MJ
    Eur J Biochem; 1995 Sep; 232(2):464-72. PubMed ID: 7556195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin.
    Pulvermüller A; Maretzki D; Rudnicka-Nawrot M; Smith WC; Palczewski K; Hofmann KP
    Biochemistry; 1997 Jul; 36(30):9253-60. PubMed ID: 9230059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin arginine-135 mutants are phosphorylated by rhodopsin kinase and bind arrestin in the absence of 11-cis-retinal.
    Shi W; Sports CD; Raman D; Shirakawa S; Osawa S; Weiss ER
    Biochemistry; 1998 Apr; 37(14):4869-74. PubMed ID: 9538004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of inositol phosphates to arrestin.
    Palczewski K; Pulvermüller A; Buczylko J; Gutmann C; Hofmann KP
    FEBS Lett; 1991 Dec; 295(1-3):195-9. PubMed ID: 1765153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light or tyrosine phosphorylation recruits retinal rod outer segment proteins to lipid rafts.
    Perdomo D; Bubis J
    Biochimie; 2020 Oct; 177():1-12. PubMed ID: 32758687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.