These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 9218777)

  • 1. Proteolysis of the phage lambda CII regulatory protein by FtsH (HflB) of Escherichia coli.
    Shotland Y; Koby S; Teff D; Mansur N; Oren DA; Tatematsu K; Tomoyasu T; Kessel M; Bukau B; Ogura T; Oppenheim AB
    Mol Microbiol; 1997 Jun; 24(6):1303-10. PubMed ID: 9218777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteolysis of bacteriophage lambda CII by Escherichia coli FtsH (HflB).
    Shotland Y; Shifrin A; Ziv T; Teff D; Koby S; Kobiler O; Oppenheim AB
    J Bacteriol; 2000 Jun; 182(11):3111-6. PubMed ID: 10809689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA).
    Kihara A; Akiyama Y; Ito K
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5544-9. PubMed ID: 9159109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB.
    Herman C; Ogura T; Tomoyasu T; Hiraga S; Akiyama Y; Ito K; Thomas R; D'Ari R; Bouloc P
    Proc Natl Acad Sci U S A; 1993 Nov; 90(22):10861-5. PubMed ID: 8248182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB.
    Herman C; Thévenet D; D'Ari R; Bouloc P
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3516-20. PubMed ID: 7724592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The HflB protease of Escherichia coli degrades its inhibitor lambda cIII.
    Herman C; Thévenet D; D'Ari R; Bouloc P
    J Bacteriol; 1997 Jan; 179(2):358-63. PubMed ID: 8990286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a conserved alpha-helical, coiled-coil motif at the C-terminal domain of the ATP-dependent FtsH (HflB) protease of Escherichia coli.
    Shotland Y; Teff D; Koby S; Kobiler O; Oppenheim AB
    J Mol Biol; 2000 Jun; 299(4):953-64. PubMed ID: 10843850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of bacteriophage lambda development by guanosine 5'-diphosphate-3'-diphosphate.
    Slomińska M; Neubauer P; Wegrzyn G
    Virology; 1999 Sep; 262(2):431-41. PubMed ID: 10502521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phage lambda CII transcriptional activator carries a C-terminal domain signaling for rapid proteolysis.
    Kobiler O; Koby S; Teff D; Court D; Oppenheim AB
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14964-9. PubMed ID: 12397182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A colicin-tolerant Escherichia coli mutant that confers hfl phenotype carries two mutations in the region coding for the C-terminal domain of FtsH (HflB).
    Teff D; Koby S; Shotland Y; Ogura T; Oppenheim AB
    FEMS Microbiol Lett; 2000 Feb; 183(1):115-7. PubMed ID: 10650212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential degradation of Escherichia coli sigma32 and Bradyrhizobium japonicum RpoH factors by the FtsH protease.
    Urech C; Koby S; Oppenheim AB; Münchbach M; Hennecke H; Narberhaus F
    Eur J Biochem; 2000 Aug; 267(15):4831-9. PubMed ID: 10903518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli HflK and HflC can individually inhibit the HflB (FtsH)-mediated proteolysis of lambdaCII in vitro.
    Bandyopadhyay K; Parua PK; Datta AB; Parrack P
    Arch Biochem Biophys; 2010 Sep; 501(2):239-43. PubMed ID: 20599668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of the periplasmic domain of Escherichia coli FtsH (HflB) in protein interactions and activity modulation.
    Akiyama Y; Kihara A; Mori H; Ogura T; Ito K
    J Biol Chem; 1998 Aug; 273(35):22326-33. PubMed ID: 9712851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli.
    Kanemori M; Nishihara K; Yanagi H; Yura T
    J Bacteriol; 1997 Dec; 179(23):7219-25. PubMed ID: 9393683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of region C in regulation of the heat shock gene-specific sigma factor of Escherichia coli, sigma32.
    Arsène F; Tomoyasu T; Mogk A; Schirra C; Schulze-Specking A; Bukau B
    J Bacteriol; 1999 Jun; 181(11):3552-61. PubMed ID: 10348869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine.
    Blaszczak A; Georgopoulos C; Liberek K
    Mol Microbiol; 1999 Jan; 31(1):157-66. PubMed ID: 9987118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled kinetics of ATP and peptide hydrolysis by Escherichia coli FtsH protease.
    Bruckner RC; Gunyuzlu PL; Stein RL
    Biochemistry; 2003 Sep; 42(36):10843-52. PubMed ID: 12962509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HflD, an Escherichia coli protein involved in the lambda lysis-lysogeny switch, impairs transcription activation by lambdaCII.
    Parua PK; Mondal A; Parrack P
    Arch Biochem Biophys; 2010 Jan; 493(2):175-83. PubMed ID: 19853572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct CIII-HflB interaction is responsible for the inhibition of the HflB (FtsH)-mediated proteolysis of Escherichia coli sigma(32) by lambdaCIII.
    Halder S; Banerjee S; Parrack P
    FEBS J; 2008 Oct; 275(19):4767-72. PubMed ID: 18721134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lambda Xis degradation in vivo by Lon and FtsH.
    Leffers GG; Gottesman S
    J Bacteriol; 1998 Mar; 180(6):1573-7. PubMed ID: 9515930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.