These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 9218777)

  • 21. Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA.
    Kihara A; Akiyama Y; Ito K
    J Mol Biol; 1998 May; 279(1):175-88. PubMed ID: 9636708
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FtsH--a single-chain charonin?
    Schumann W
    FEMS Microbiol Rev; 1999 Jan; 23(1):1-11. PubMed ID: 10077851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186.
    Murchland IM; Ahlgren-Berg A; Pietsch JMJ; Isabel A; Dodd IB; Shearwin KE
    Nucleic Acids Res; 2020 Dec; 48(21):12030-12041. PubMed ID: 33211866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A protease complex in the Escherichia coli plasma membrane: HflKC (HflA) forms a complex with FtsH (HflB), regulating its proteolytic activity against SecY.
    Kihara A; Akiyama Y; Ito K
    EMBO J; 1996 Nov; 15(22):6122-31. PubMed ID: 8947034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The heat shock response of Escherichia coli.
    Arsène F; Tomoyasu T; Bukau B
    Int J Food Microbiol; 2000 Apr; 55(1-3):3-9. PubMed ID: 10791710
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli.
    Tomoyasu T; Ogura T; Tatsuta T; Bukau B
    Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacteriophage lambda cIII gene product has an additional function apart from inhibition of cII degradation.
    Latała B; Obuchowski M; W grzyn G
    Virus Genes; 2001 Mar; 22(2):127-32. PubMed ID: 11324748
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins.
    Akiyama Y; Kihara A; Tokuda H; Ito K
    J Biol Chem; 1996 Dec; 271(49):31196-201. PubMed ID: 8940120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cleavage of the cII protein of phage lambda by purified HflA protease: control of the switch between lysis and lysogeny.
    Cheng HH; Muhlrad PJ; Hoyt MA; Echols H
    Proc Natl Acad Sci U S A; 1988 Nov; 85(21):7882-6. PubMed ID: 2973057
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda cII protein.
    Banuett F; Hoyt MA; McFarlane L; Echols H; Herskowitz I
    J Mol Biol; 1986 Jan; 187(2):213-24. PubMed ID: 2939254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of C-terminal residues in oligomerization and stability of lambda CII: implications for lysis-lysogeny decision of the phage.
    Datta AB; Roy S; Parrack P
    J Mol Biol; 2005 Jan; 345(2):315-24. PubMed ID: 15571724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on Escherichia coli HflKC suggest the presence of an unidentified λ factor that influences the lysis-lysogeny switch.
    Bandyopadhyay K; Parua PK; Datta AB; Parrack P
    BMC Microbiol; 2011 Feb; 11():34. PubMed ID: 21324212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing the antiprotease activity of lambdaCIII, an inhibitor of the Escherichia coli metalloprotease HflB (FtsH).
    Halder S; Datta AB; Parrack P
    J Bacteriol; 2007 Nov; 189(22):8130-8. PubMed ID: 17890311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation.
    Kanemori M; Yanagi H; Yura T
    J Biol Chem; 1999 Jul; 274(31):22002-7. PubMed ID: 10419524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32.
    Tomoyasu T; Gamer J; Bukau B; Kanemori M; Mori H; Rutman AJ; Oppenheim AB; Yura T; Yamanaka K; Niki H
    EMBO J; 1995 Jun; 14(11):2551-60. PubMed ID: 7781608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo.
    Tatsuta T; Tomoyasu T; Bukau B; Kitagawa M; Mori H; Karata K; Ogura T
    Mol Microbiol; 1998 Nov; 30(3):583-93. PubMed ID: 9822823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phage lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision.
    Kobiler O; Rokney A; Oppenheim AB
    PLoS One; 2007 Apr; 2(4):e363. PubMed ID: 17426811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neither absence nor excess of lambda O initiator-digesting ClpXP protease affects lambda plasmid or phage replication in Escherichia coli.
    Szalewska A; Wegrzyn G; Taylor K
    Mol Microbiol; 1994 Aug; 13(3):469-74. PubMed ID: 7997163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revisiting the lysogenization control of bacteriophage lambda. Identification and characterization of a new host component, HflD.
    Kihara A; Akiyama Y; Ito K
    J Biol Chem; 2001 Apr; 276(17):13695-700. PubMed ID: 11278968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.