These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 9218777)

  • 41. Dislocation of membrane proteins in FtsH-mediated proteolysis.
    Kihara A; Akiyama Y; Ito K
    EMBO J; 1999 Jun; 18(11):2970-81. PubMed ID: 10357810
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The C-terminal end of LpxC is required for degradation by the FtsH protease.
    Führer F; Langklotz S; Narberhaus F
    Mol Microbiol; 2006 Feb; 59(3):1025-36. PubMed ID: 16420369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Polypeptide binding of Escherichia coli FtsH (HflB).
    Akiyama Y; Ehrmann M; Kihara A; Ito K
    Mol Microbiol; 1998 May; 28(4):803-12. PubMed ID: 9643547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in Escherichia coli.
    Akiyama Y
    Proc Natl Acad Sci U S A; 2002 Jun; 99(12):8066-71. PubMed ID: 12034886
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Escherichia coli requires the protease activity of FtsH for growth.
    Jayasekera MM; Foltin SK; Olson ER; Holler TP
    Arch Biochem Biophys; 2000 Aug; 380(1):103-7. PubMed ID: 10900138
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Roles of multimerization and membrane association in the proteolytic functions of FtsH (HflB).
    Akiyama Y; Ito K
    EMBO J; 2000 Aug; 19(15):3888-95. PubMed ID: 10921871
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus.
    Fischer B; Rummel G; Aldridge P; Jenal U
    Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis.
    Yamada-Inagawa T; Okuno T; Karata K; Yamanaka K; Ogura T
    J Biol Chem; 2003 Dec; 278(50):50182-7. PubMed ID: 14514680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Toxicity of the bacteriophage lambda cII gene product to Escherichia coli arises from inhibition of host cell DNA replication.
    Kedzierska B; Glinkowska M; Iwanicki A; Obuchowski M; Sojka P; Thomas MS; Wegrzyn G
    Virology; 2003 Sep; 313(2):622-8. PubMed ID: 12954227
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An internal region of the RpoH heat shock transcription factor is critical for rapid degradation by the FtsH protease.
    Bertani D; Oppenheim AB; Narberhaus F
    FEBS Lett; 2001 Mar; 493(1):17-20. PubMed ID: 11277997
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK.
    Liberek K; Marszalek J; Ang D; Georgopoulos C; Zylicz M
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2874-8. PubMed ID: 1826368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator.
    Liberek K; Wall D; Georgopoulos C
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6224-8. PubMed ID: 7603976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32).
    Tatsuta T; Joob DM; Calendar R; Akiyama Y; Ogura T
    FEBS Lett; 2000 Aug; 478(3):271-5. PubMed ID: 10930581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32.
    Gamer J; Bujard H; Bukau B
    Cell; 1992 May; 69(5):833-42. PubMed ID: 1534276
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity of the Hsp70 chaperone complex--DnaK, DnaJ, and GrpE--in initiating phage lambda DNA replication by sequestering and releasing lambda P protein.
    Hoffmann HJ; Lyman SK; Lu C; Petit MA; Echols H
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):12108-11. PubMed ID: 1361234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SeqA-mediated stimulation of a promoter activity by facilitating functions of a transcription activator.
    Słomińska M; Konopa G; Ostrowska J; Kedzierska B; Wegrzyn G; Wegrzyn A
    Mol Microbiol; 2003 Mar; 47(6):1669-79. PubMed ID: 12622820
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Helicobacter felis ftsH gene encoding an ATP-dependent metalloprotease can replace the Escherichia coli homologue for growth and phage lambda lysogenization.
    Melchers K; Wiegert T; Buhmann A; Postius S; Schäfer KP; Schumann W
    Arch Microbiol; 1998 May; 169(5):393-6. PubMed ID: 9560419
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Roles of homooligomerization and membrane association in ATPase and proteolytic activities of FtsH in vitro.
    Akiyama Y; Ito K
    Biochemistry; 2001 Jun; 40(25):7687-93. PubMed ID: 11412122
    [TBL] [Abstract][Full Text] [Related]  

  • 59. When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli.
    Bittner LM; Arends J; Narberhaus F
    Biol Chem; 2017 May; 398(5-6):625-635. PubMed ID: 28085670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An AAA protease FtsH can initiate proteolysis from internal sites of a model substrate, apo-flavodoxin.
    Okuno T; Yamanaka K; Ogura T
    Genes Cells; 2006 Mar; 11(3):261-8. PubMed ID: 16483314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.