BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9218785)

  • 1. Aerolysin and pertussis toxin share a common receptor-binding domain.
    Rossjohn J; Buckley JT; Hazes B; Murzin AG; Read RJ; Parker MW
    EMBO J; 1997 Jun; 16(12):3426-34. PubMed ID: 9218785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of BinB: a receptor binding component of the binary toxin from Lysinibacillus sphaericus.
    Srisucharitpanit K; Yao M; Promdonkoy B; Chimnaronk S; Tanaka I; Boonserm P
    Proteins; 2014 Oct; 82(10):2703-12. PubMed ID: 24975613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin-like fold of a Bacillus thuringiensis insecticidal toxin.
    Burton SL; Ellar DJ; Li J; Derbyshire DJ
    J Mol Biol; 1999 Apr; 287(5):1011-22. PubMed ID: 10222207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of functional domains of Clostridium septicum alpha toxin.
    Melton-Witt JA; Bentsen LM; Tweten RK
    Biochemistry; 2006 Dec; 45(48):14347-54. PubMed ID: 17128973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of receptor binding by the channel-forming toxin aerolysin using surface plasmon resonance.
    MacKenzie CR; Hirama T; Buckley JT
    J Biol Chem; 1999 Aug; 274(32):22604-9. PubMed ID: 10428840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerolysin--a paradigm for membrane insertion of beta-sheet protein toxins?
    Rossjohn J; Feil SC; McKinstry WJ; Tsernoglou D; van der Goot G; Buckley JT; Parker MW
    J Struct Biol; 1998; 121(2):92-100. PubMed ID: 9615432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pertussis toxin has eukaryotic-like carbohydrate recognition domains.
    Saukkonen K; Burnette WN; Mar VL; Masure HR; Tuomanen EI
    Proc Natl Acad Sci U S A; 1992 Jan; 89(1):118-22. PubMed ID: 1729677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a pertussis toxin-sugar complex as a model for receptor binding.
    Stein PE; Boodhoo A; Armstrong GD; Heerze LD; Cockle SA; Klein MH; Read RJ
    Nat Struct Biol; 1994 Sep; 1(9):591-6. PubMed ID: 7634099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lectin domains in the toxin of Bordetella pertussis: selectin mimicry linked to microbial pathogenesis.
    Sandros J; Rozdzinski E; Zheng J; Cowburn D; Tuomanen E
    Glycoconj J; 1994 Dec; 11(6):501-6. PubMed ID: 7535138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis.
    Xu C; Chinte U; Chen L; Yao Q; Meng Y; Zhou D; Bi LJ; Rose J; Adang MJ; Wang BC; Yu Z; Sun M
    Biochem Biophys Res Commun; 2015 Jul; 462(3):184-9. PubMed ID: 25957471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins.
    Baker HM; Basu I; Chung MC; Caradoc-Davies T; Fraser JD; Baker EN
    J Mol Biol; 2007 Dec; 374(5):1298-308. PubMed ID: 17996251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clostridium perfringens epsilon-toxin shows structural similarity to the pore-forming toxin aerolysin.
    Cole AR; Gibert M; Popoff M; Moss DS; Titball RW; Basak AK
    Nat Struct Mol Biol; 2004 Aug; 11(8):797-8. PubMed ID: 15258571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glycan core of GPI-anchored proteins modulates aerolysin binding but is not sufficient: the polypeptide moiety is required for the toxin-receptor interaction.
    Abrami L; Velluz MC; Hong Y; Ohishi K; Mehlert A; Ferguson M; Kinoshita T; Gisou van der Goot F
    FEBS Lett; 2002 Feb; 512(1-3):249-54. PubMed ID: 11852090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laetiporus sulphureus lectin and aerolysin protein family.
    Mancheño JM; Tateno H; Sher D; Goldstein IJ
    Adv Exp Med Biol; 2010; 677():67-80. PubMed ID: 20687481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A rivet model for channel formation by aerolysin-like pore-forming toxins.
    Iacovache I; Paumard P; Scheib H; Lesieur C; Sakai N; Matile S; Parker MW; van der Goot FG
    EMBO J; 2006 Feb; 25(3):457-66. PubMed ID: 16424900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and properties of an aerolysin--Clostridium septicum alpha toxin hybrid protein.
    Diep DB; Nelson KL; Lawrence TS; Sellman BR; Tweten RK; Buckley JT
    Mol Microbiol; 1999 Feb; 31(3):785-94. PubMed ID: 10048023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clostridial pore-forming toxins: powerful virulence factors.
    Popoff MR
    Anaerobe; 2014 Dec; 30():220-38. PubMed ID: 24952276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending the aerolysin family: from bacteria to vertebrates.
    Szczesny P; Iacovache I; Muszewska A; Ginalski K; van der Goot FG; Grynberg M
    PLoS One; 2011; 6(6):e20349. PubMed ID: 21687664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerolysin--the ins and outs of a model channel-forming toxin.
    Parker MW; van der Goot FG; Buckley JT
    Mol Microbiol; 1996 Jan; 19(2):205-12. PubMed ID: 8825766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single amino acid substitution in the enzymatic domain of cytotoxic necrotizing factor type 1 of Escherichia coli alters the tissue culture phenotype to that of the dermonecrotic toxin of Bordetella spp.
    McNichol BA; Rasmussen SB; Meysick KC; O'Brien AD
    Mol Microbiol; 2006 May; 60(4):939-50. PubMed ID: 16677305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.