These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9219243)

  • 41. Fluorescein as a label for non-radioactive in situ hybridization.
    Durrant I; Brunning S; Eccleston L; Chadwick P; Cunningham M
    Histochem J; 1995 Jan; 27(1):94-9. PubMed ID: 7713760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Homogeneous amplification and mutation scanning of the p53 gene using fluorescent melting curves.
    Millward H; Samowitz W; Wittwer CT; Bernard PS
    Clin Chem; 2002 Aug; 48(8):1321-8. PubMed ID: 12142390
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Primer-induced labeling of pea and field bean chromosomes in situ and in suspension.
    Macas J; Dolezel J; Gualberti G; Pich U; Schubert I; Lucretti S
    Biotechniques; 1995 Sep; 19(3):402-4; 407-8. PubMed ID: 7495553
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Non-isotopical labeling of murine heterochromatin in situ by hybridization with in vitro-synthesized biotinylated gamma (major) satellite DNA.
    Weier HU; Zitzelsberger HF; Gray JW
    Biotechniques; 1991 Apr; 10(4):498-502, 504-5. PubMed ID: 1867859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis.
    Boyle S; Rodesch MJ; Halvensleben HA; Jeddeloh JA; Bickmore WA
    Chromosome Res; 2011 Oct; 19(7):901-9. PubMed ID: 22006037
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fluorescence-labelled DNA probes to detect complementary sequences in homogeneous media.
    Talavera EM; Afkir M; Salto R; Vargas AM; Alvarez-Pez JM
    J Photochem Photobiol B; 2000 Dec; 59(1-3):9-14. PubMed ID: 11332896
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of DNA targets with biotinylated and fluoresceinated RNA probes. Effects of the extent of derivitization on detection sensitivity.
    Folsom V; Hunkeler MJ; Haces A; Harding JD
    Anal Biochem; 1989 Nov; 182(2):309-14. PubMed ID: 2481987
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accessing genetic information with high-density DNA arrays.
    Chee M; Yang R; Hubbell E; Berno A; Huang XC; Stern D; Winkler J; Lockhart DJ; Morris MS; Fodor SP
    Science; 1996 Oct; 274(5287):610-4. PubMed ID: 8849452
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hybridization probe pairs and single-labeled probes: an alternative approach for genotyping and quantification.
    Froehlich T; Geulen O
    Methods Mol Biol; 2008; 429():117-33. PubMed ID: 18695963
    [TBL] [Abstract][Full Text] [Related]  

  • 50. LUEGO: a cost and time saving gel shift procedure.
    Jullien N; Herman JP
    Biotechniques; 2011 Oct; 51(4):267-9. PubMed ID: 21988693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonradioactive, sequence-specific detection of RNA in situ by primed in situ labeling (PRINS).
    Mogensen J; Kølvraa S; Hindkjaer J; Petersen S; Koch J; Nygård M; Jensen T; Gregersen N; Junker S; Bolund L
    Exp Cell Res; 1991 Sep; 196(1):92-8. PubMed ID: 1879475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FastTag Nucleic Acid Labeling System: a versatile method for incorporating haptens, fluorochromes and affinity ligands into DNA, RNA and oligonucleotides.
    Daniel SG; Westling ME; Moss MS; Kanagy BD
    Biotechniques; 1998 Mar; 24(3):484-9. PubMed ID: 9526662
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enzymatic addition of fluorescein- or biotin-riboUTP to oligonucleotides results in primers suitable for DNA sequencing and PCR.
    Igloi GL; Schiefermayr E
    Biotechniques; 1993 Sep; 15(3):486-8, 490-2, 494-7. PubMed ID: 8217163
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of long synthetic oligonucleotides for gene analysis: effect of probe length and stringency conditions on hybridization specificity.
    Kajimura Y; Krull J; Miyakoshi S; Itakura K; Toyoda H
    Genet Anal Tech Appl; 1990 Jun; 7(4):71-9. PubMed ID: 2206600
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using synthetic oligonucleotides as probes.
    Duby A; Jacobs KA; Celeste A
    Curr Protoc Mol Biol; 2001 May; Chapter 6():Unit6.4. PubMed ID: 18265259
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-Labeled Oligonucleotides Showing Fluorescence Changes Upon Hybridization with Target Nucleic Acids.
    Hwang GT
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29316733
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization.
    Yang R; Jin J; Chen Y; Shao N; Kang H; Xiao Z; Tang Z; Wu Y; Zhu Z; Tan W
    J Am Chem Soc; 2008 Jul; 130(26):8351-8. PubMed ID: 18528999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of fluorescent adjacent hybridization probes and their application in real-time PCR for the simultaneous detection and identification of Fervidobacterium and Caloramator.
    Connolly GR; Patel BKC
    Int J Syst Evol Microbiol; 2002 Sep; 52(Pt 5):1837-1843. PubMed ID: 12361295
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient Synthesis of a Wide-Range Absorbing Azaphthalocyanine Dark Quencher and Its Application to Dual-Labeled Oligonucleotide Probes for Quantitative Real-Time Polymerase Chain Reactions.
    Demuth J; Kucera R; Kopecky K; Havlínová Z; Libra A; Novakova V; Miletin M; Zimcik P
    Chemistry; 2018 Jul; 24(38):9658-9666. PubMed ID: 29683215
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In situ transcription with Tth DNA polymerase and fluorescent nucleotides.
    Chang H
    J Immunol Methods; 1994 Dec; 176(2):235-43. PubMed ID: 7983381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.