BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 921927)

  • 1. Fluorescence depolarization studies on the flexibility of myosin rod.
    Harvey SC; Cheung HC
    Biochemistry; 1977 Nov; 16(24):5181-7. PubMed ID: 921927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microsecond rotational motions of eosin-labeled myosin measured by time-resolved anisotropy of absorption and phosphorescence.
    Eads TM; Thomas DD; Austin RH
    J Mol Biol; 1984 Oct; 179(1):55-81. PubMed ID: 6209402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational stability of the myosin rod.
    Cross RA; Bardsley RG; Ledward DA; Small JV; Sobieszek A
    Eur J Biochem; 1984 Dec; 145(2):305-10. PubMed ID: 6389130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of thermal denaturation of the rod part of myosin molecule by microcalorimetry and intrinsic fluorescence methods].
    Shnyrov VL; Vedenkina NS; Ostrovskiĭ AV; Permiakov EA; Golitsyna NL; Levitskiĭ DI
    Biofizika; 1990; 35(3):415-20. PubMed ID: 2207184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acrylamide fluorescence quenching studies on the actin-induced change in protein dynamics in the subfragment-1/subfragment-2 link region of cardiac myosin.
    Hiratsuka T
    J Biochem; 1983 Mar; 93(3):875-82. PubMed ID: 6223924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformation of immunoglobulin M. 2. Nanosecond fluorescence depolarization analysis of segmental flexibility in anti-epsilon-l-dimethylamino-5-naphthalenesulfonyl-L-lysine anti-immunoglobulin from horse, pig, and shark.
    Holowka DA; Cathou RE
    Biochemistry; 1976 Jul; 15(15):3379-90. PubMed ID: 986160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bending motions and internal motions in myosin rod.
    Highsmith S; Wang CC; Zero K; Pecora R; Jardetzky O
    Biochemistry; 1982 Mar; 21(6):1192-7. PubMed ID: 7074075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential scanning calorimetric study of the thermal unfolding of myosin rod, light meromyosin, and subfragment 2.
    Lopez-Lacomba JL; Guzman M; Cortijo M; Mateo PL; Aguirre R; Harvey SC; Cheung HC
    Biopolymers; 1989 Dec; 28(12):2143-59. PubMed ID: 2690963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of divalent cations on the rotational mobility of myosin, heavy meromyosin and myosin subfragment-1 and on the binding of heavy meromyosin to actin.
    Highsmith S
    Biochim Biophys Acta; 1978 Sep; 536(1):156-64. PubMed ID: 361092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence anisotropy of labeled F-actin: influence of divalent cations on the interaction between F-actin and myosin heads.
    Miki M; Wahl P; Auchet JC
    Biochemistry; 1982 Jul; 21(15):3661-5. PubMed ID: 6214272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport properties of rigid bent-rod macromolecules and of semiflexible broken rods in the rigid-body treatment. Analysis of the flexibility of myosin rod.
    Iniesta A; Díaz FG; García de la Torre J
    Biophys J; 1988 Aug; 54(2):269-75. PubMed ID: 3207825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure effects and thermal stability of myosin rods and rod minifilaments: fluorescence and circular dichroism studies.
    King L; Liu CC; Lee RF
    Biochemistry; 1994 May; 33(18):5570-80. PubMed ID: 8180180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melting of myosin rod as revealed by electron microscopy. II. Effects of temperature and pH on length and stability of myosin rod and its fragments.
    Walzthöny D; Eppenberger HM; Ueno H; Harrington WF; Wallimann T
    Eur J Cell Biol; 1986 Jun; 41(1):38-43. PubMed ID: 3792336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal unfolding of myosin rod and light meromyosin: circular dichroism and tryptophan fluorescence studies.
    King L; Lehrer SS
    Biochemistry; 1989 Apr; 28(8):3498-502. PubMed ID: 2663071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bending of smooth muscle myosin rod.
    Cross RA
    FEBS Lett; 1984 Oct; 176(1):197-201. PubMed ID: 6386520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexibility of myosin rod determined from dilute solution viscoelastic measurements.
    Hvidt S; Nestler FH; Greaser ML; Ferry JD
    Biochemistry; 1982 Aug; 21(17):4064-73. PubMed ID: 7126531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmental flexibility of immunoglobulin G antibody molecules in solution: a new interpretation.
    Hanson DC; Yguerabide J; Schumaker VN
    Biochemistry; 1981 Nov; 20(24):6842-52. PubMed ID: 7317358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexibility of myosin rod, light meromyosin, and myosin subfragment-2 in solution.
    Highsmith S; Kretzschmar KM; O'Konski CT; Morales MF
    Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4986-90. PubMed ID: 337306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rotational motions of myosin heads in myofibril studied by phosphorescence anisotropy decay measurements.
    Ishiwata S; Kinosita K; Yoshimura H; Ikegami A
    J Biol Chem; 1987 Jun; 262(17):8314-7. PubMed ID: 2439498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion of myosin cross-bridges in skeletal muscle fibers studied by time-resolved fluorescence anisotropy decay.
    Burghardt TP; Thompson NL
    Biochemistry; 1985 Jul; 24(14):3731-5. PubMed ID: 4041436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.