These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 921949)
1. Exposure of tryptophanyl residues and protein dynamics. Eftink MR; Ghiron CA Biochemistry; 1977 Dec; 16(25):5546-51. PubMed ID: 921949 [TBL] [Abstract][Full Text] [Related]
2. Exposure of tryptophanyl residues in proteins. Quantitative determination by fluorescence quenching studies. Eftink MR; Ghiron CA Biochemistry; 1976 Feb; 15(3):672-80. PubMed ID: 1252418 [TBL] [Abstract][Full Text] [Related]
3. Viscosity dependence of the solute quenching of the tryptophanyl fluorescence of proteins. Eftink MR; Hagaman KA Biophys Chem; 1986 Dec; 25(3):277-82. PubMed ID: 3103704 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence quenching of the buried tryptophan residue of cod parvalbumin. Eftink MR; Hagaman KA Biophys Chem; 1985 Aug; 22(3):173-80. PubMed ID: 4052574 [TBL] [Abstract][Full Text] [Related]
5. A hydrophobic quencher of protein fluorescence: 2,2,2-trichloroethanol. Eftink MR; Zajicek JL; Ghiron CA Biochim Biophys Acta; 1977 Apr; 491(2):473-81. PubMed ID: 857905 [TBL] [Abstract][Full Text] [Related]
6. Quenching of tryptophanyl fluorescence of bovine adrenal P-450C-21 and inhibition of substrate binding by acrylamide. Narasimhulu S Biochemistry; 1988 Feb; 27(4):1147-53. PubMed ID: 3259146 [TBL] [Abstract][Full Text] [Related]
7. Dynamics of a protein matrix revealed by fluorescence quenching. Eftink MR; Ghiron CA Proc Natl Acad Sci U S A; 1975 Sep; 72(9):3290-4. PubMed ID: 810800 [TBL] [Abstract][Full Text] [Related]
8. Studies on the location of aromatic amino acids in alpha-crystallin. Augusteyn RC; Ghiggino KP; Putilina T Biochim Biophys Acta; 1993 Mar; 1162(1-2):61-71. PubMed ID: 8448196 [TBL] [Abstract][Full Text] [Related]
9. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry. Eftink MR; Jameson DM Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389 [TBL] [Abstract][Full Text] [Related]
10. Investigations of the molecular basis for the temperature-dependent insolubility of cryoglobulins. VI. Quenching by acrylamide of the intrinsic tryptophan fluorescence of cryoglobulin and non-cryoglobulin IgM proteins. Middaugh CR; Litman GW Biochim Biophys Acta; 1978 Jul; 535(1):33-43. PubMed ID: 667117 [TBL] [Abstract][Full Text] [Related]
11. Viscosity dependence of acrylamide quenching of ribonuclease T1 fluorescence. The gating mechanism. Somogyi B; Norman JA; Punyiczki M; Rosenberg A Biochim Biophys Acta; 1992 Feb; 1119(1):81-9. PubMed ID: 1540639 [TBL] [Abstract][Full Text] [Related]
12. Protein phosphorescence quenching: distinction between quencher penetration and external quenching mechanisms. Strambini GB; Gonnelli M J Phys Chem B; 2010 Jul; 114(29):9691-7. PubMed ID: 20597520 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of substrate binding to the adrenal cytochrome P450C-21 by acrylamide and its implications for solvent accessibility of the binding site in the microsomes. Narasimhulu S Biochemistry; 1991 Sep; 30(38):9319-27. PubMed ID: 1892836 [TBL] [Abstract][Full Text] [Related]
14. A double-quenching method for studying protein dynamics: separation of the fluorescence quenching parameters characteristic of solvent-exposed and solvent-masked fluorophors. Somogyi B; Papp S; Rosenberg A; Seres I; Matkó J; Welch GR; Nagy P Biochemistry; 1985 Nov; 24(23):6674-9. PubMed ID: 4084551 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence quenching of buried Trp residues by acrylamide does not require penetration of the protein fold. Strambini GB; Gonnelli M J Phys Chem B; 2010 Jan; 114(2):1089-93. PubMed ID: 19924836 [TBL] [Abstract][Full Text] [Related]
16. Gated quenching of intrinsic fluorescence and phosphorescence of globular proteins. An extended model. Somogyi B; Norman JA; Rosenberg A Biophys J; 1986 Jul; 50(1):55-61. PubMed ID: 3730507 [TBL] [Abstract][Full Text] [Related]
17. Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide. Feldman I; Norton GE Biochim Biophys Acta; 1980 Sep; 615(1):132-42. PubMed ID: 7000190 [TBL] [Abstract][Full Text] [Related]
18. Steady state and time-resolved fluorescence study of residual structures in an unfolded form of yeast phosphoglycerate kinase. Garcia P; Mérola F; Receveur V; Blandin P; Minard P; Desmadril M Biochemistry; 1998 May; 37(20):7444-55. PubMed ID: 9585558 [TBL] [Abstract][Full Text] [Related]
19. Coupling between external viscosity and the intramolecular dynamics of ribonuclease T1: a two-phase model for the quenching of protein fluorescence. Somogyi B; Punyiczki M; Hedstrom J; Norman JA; Prendergast FG; Rosenberg A Biochim Biophys Acta; 1994 Nov; 1209(1):61-8. PubMed ID: 7947983 [TBL] [Abstract][Full Text] [Related]
20. A photoreversible conformational change in 124 kDa Avena phytochrome. Singh BR; Chai YG; Song PS; Lee J; Robinson GW Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]