These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9219520)

  • 1. 13C-NMR studies of transmembrane electron transfer to extracellular ferricyanide in human erythrocytes.
    Himmelreich U; Kuchel PW
    Eur J Biochem; 1997 Jun; 246(3):638-45. PubMed ID: 9219520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 13C NMR studies of vitamin C transport and its redox cycling in human erythrocytes.
    Himmelreich U; Drew KN; Serianni AS; Kuchel PW
    Biochemistry; 1998 May; 37(20):7578-88. PubMed ID: 9585573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ascorbate-mediated transmembrane-reducing system of the human erythrocyte.
    Orringer EP; Roer ME
    J Clin Invest; 1979 Jan; 63(1):53-8. PubMed ID: 216708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular flavonoids as electron donors for extracellular ferricyanide reduction in human erythrocytes.
    Fiorani M; De Sanctis R; De Bellis R; Dachà M
    Free Radic Biol Med; 2002 Jan; 32(1):64-72. PubMed ID: 11755318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascorbic acid recycling enhances the antioxidant reserve of human erythrocytes.
    May JM; Qu ZC; Whitesell RR
    Biochemistry; 1995 Oct; 34(39):12721-8. PubMed ID: 7548025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarities in the metabolism of alloxan and dehydroascorbate in human erythrocytes.
    Davis JL; Mendiratta S; May JM
    Biochem Pharmacol; 1998 Apr; 55(8):1301-7. PubMed ID: 9719486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbate-dependent electron transfer across the human erythrocyte membrane.
    May JM; Qu ZC
    Biochim Biophys Acta; 1999 Sep; 1421(1):19-31. PubMed ID: 10561468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human erythrocyte recycling of ascorbic acid: relative contributions from the ascorbate free radical and dehydroascorbic acid.
    May JM; Qu ZC; Cobb CE
    J Biol Chem; 2004 Apr; 279(15):14975-82. PubMed ID: 14752116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ascorbate recycling in human erythrocytes: role of GSH in reducing dehydroascorbate.
    May JM; Qu ZC; Whitesell RR; Cobb CE
    Free Radic Biol Med; 1996; 20(4):543-51. PubMed ID: 8904295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for Na+/H+ exchangers and intracellular pH in regulating vitamin C-driven electron transport across the plasma membrane.
    Lane DJ; Robinson SR; Czerwinska H; Lawen A
    Biochem J; 2010 May; 428(2):191-200. PubMed ID: 20307259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ascorbate-mediated transmembrane electron transport and ascorbate uptake in leukemic cell lines are two different processes.
    Schweinzer E; Goldenberg H
    Eur J Biochem; 1992 Jun; 206(3):807-12. PubMed ID: 1606963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of ascorbic acid recycling in human erythrocytes.
    May JM; Qu Z; Morrow JD
    Biochim Biophys Acta; 2001 Oct; 1528(2-3):159-66. PubMed ID: 11687303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Potentiometric study of redox systems of human erythrocytes using potassium ferricyanide].
    Balmukhanov BS; Zamula SV; Ataullakhanov FI
    Biokhimiia; 1980 May; 45(5):945-9. PubMed ID: 7378513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase.
    Van Duijn MM; Van der Zee J; VanSteveninck J; Van den Broek PJ
    J Biol Chem; 1998 May; 273(22):13415-20. PubMed ID: 9593673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane electron transfer in diabetic nephropathy.
    Matteucci E; Giampietro O
    Diabetes Care; 2000 Jul; 23(7):994-9. PubMed ID: 10895853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the extracellular reduction of ferricyanide by rat liver. A trans-plasma membrane redox system.
    Clark MG; Partick EJ; Patten GS; Crane FL; Löw H; Grebing C
    Biochem J; 1981 Dec; 200(3):565-72. PubMed ID: 6282252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
    Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():389-401. PubMed ID: 671319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of extracellular potassium ferricyanide by transmembrane NADH: (acceptor) oxidoreductase of human erythrocytes.
    Schipfer W; Neophytou B; Trobisch R; Groiss O; Goldenberg H
    Int J Biochem; 1985; 17(7):819-23. PubMed ID: 4054423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.
    Vera JC; Rivas CI; Zhang RH; Farber CM; Golde DW
    Blood; 1994 Sep; 84(5):1628-34. PubMed ID: 8068952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbate-mediated transplasma membrane electron transport in pulmonary arterial endothelial cells.
    Merker MP; Olson LE; Bongard RD; Patel MK; Linehan JH; Dawson CA
    Am J Physiol; 1998 May; 274(5):L685-93. PubMed ID: 9612283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.