These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 9219618)

  • 41. Ionotropic glutamate receptors expressed in human retinoblastoma Y79 cells.
    Takeda M; Haga M; Yamada H; Kinoshita M; Otsuka M; Tsuboi S; Moriyama Y
    Neurosci Lett; 2000 Nov; 294(2):97-100. PubMed ID: 11058796
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Developmental regulation of intracellular calcium by N-methyl-D-aspartate and noradrenaline in rat visual cortex.
    Kobayashi M; Imamura K; Kaub PA; Nakadate K; Watanabe Y
    Neuroscience; 1999; 92(4):1309-22. PubMed ID: 10426486
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Calcium-sensitive fluorescent dyes can report increases in intracellular free zinc concentration in cultured forebrain neurons.
    Cheng C; Reynolds IJ
    J Neurochem; 1998 Dec; 71(6):2401-10. PubMed ID: 9832138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fractional contribution of calcium to the cation current through glutamate receptor channels.
    Schneggenburger R; Zhou Z; Konnerth A; Neher E
    Neuron; 1993 Jul; 11(1):133-43. PubMed ID: 7687849
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of Ca2+ influx in leech Retzius neurons. I. Effect of extracellular pH.
    Hochstrate P; Dierkes PW; Kilb W; Schlue WR
    J Membr Biol; 2001 Nov; 184(1):13-25. PubMed ID: 11687874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glutamate in life and death of retinal amacrine cells.
    Duarte CB; Ferreira IL; Santos PF; Carvalho AL; Agostinho PM; Carvalho AP
    Gen Pharmacol; 1998 Mar; 30(3):289-95. PubMed ID: 9510076
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Muscarinic agonists cause calcium influx and calcium mobilization in forebrain neurons in vitro.
    Reynolds IJ; Miller RJ
    J Neurochem; 1989 Jul; 53(1):226-33. PubMed ID: 2723657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interleukin-6 selectively enhances the intracellular calcium response to NMDA in developing CNS neurons.
    Qiu Z; Parsons KL; Gruol DL
    J Neurosci; 1995 Oct; 15(10):6688-99. PubMed ID: 7472429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Measurement of intracellular free zinc concentrations accompanying zinc-induced neuronal death.
    Canzoniero LM; Turetsky DM; Choi DW
    J Neurosci; 1999 Oct; 19(19):RC31. PubMed ID: 10493776
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid throughput analysis demonstrates that chemicals with distinct seizurogenic mechanisms differentially alter Ca2+ dynamics in networks formed by hippocampal neurons in culture.
    Cao Z; Zou X; Cui Y; Hulsizer S; Lein PJ; Wulff H; Pessah IN
    Mol Pharmacol; 2015 Apr; 87(4):595-605. PubMed ID: 25583085
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel role of the Ca(2+)-ATPase in NMDA-induced intracellular acidification.
    Wu ML; Chen JH; Chen WH; Chen YJ; Chu KC
    Am J Physiol; 1999 Oct; 277(4):C717-27. PubMed ID: 10516102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Effect of kainic acid on the metabolism of intracellular calcium and oxidation-reduction processes in structures of the cerebral cortex].
    Samoĭlov MO; Semenov DG; Lazarevich E
    Fiziol Zh SSSR Im I M Sechenova; 1986 Jul; 72(7):874-80. PubMed ID: 3758403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Calcium signals in cell lines derived from the cerebral cortex of normal and trisomy 16 mice.
    Cárdenas AM; Rodríguez MP; Cortés MP; Alvarez RM; Wei W; Rapoport SI; Shimahara T; Caviedes R; Caviedes P
    Neuroreport; 1999 Feb; 10(2):363-9. PubMed ID: 10203336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mild acidosis enhances AMPA receptor-mediated intracellular zinc mobilization in cortical neurons.
    Frazzini V; Rapposelli IG; Corona C; Rockabrand E; Canzoniero LM; Sensi SL
    Mol Med; 2007; 13(7-8):356-61. PubMed ID: 17622309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatiotemporal distribution of Ca2+ following axotomy and throughout the recovery process of cultured Aplysia neurons.
    Ziv NE; Spira ME
    Eur J Neurosci; 1993 Jun; 5(6):657-68. PubMed ID: 8261139
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intracellular calcium recordings from isolated cells of the mammalian central nervous system.
    Morris ME; MacDonald JF; Friedlich JJ; Szekelyhidi I
    Can J Physiol Pharmacol; 1987 May; 65(5):926-33. PubMed ID: 3621053
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Excitatory amino acids as a final common pathway for neurologic disorders.
    Lipton SA; Rosenberg PA
    N Engl J Med; 1994 Mar; 330(9):613-22. PubMed ID: 7905600
    [No Abstract]   [Full Text] [Related]  

  • 58. Intracellular calcium in mammalian brain cells: fluorescence measurements with quin2.
    Morris ME; Friedlich JJ; MacDonald JF
    Exp Brain Res; 1987; 65(3):520-6. PubMed ID: 3556480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rise in free intracellular calcium in HeLa cells infected with aggregative Klebsiella pneumoniae strains isolated from cases of diarrhoea.
    Pal A; Hoque KM; Niyogi SK; Ramamurthy T; Nair GB; Bhattacharya SK; Chakrabarti MK
    Indian J Med Res; 2001 Jan; 113():1-4. PubMed ID: 11280164
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Light-evoked and kainic-acid-induced disc shedding by rod photoreceptors: differential sensitivity to extracellular calcium.
    Besharse JC; Spratt G; Forestner DM
    J Comp Neurol; 1986 Sep; 251(2):185-97. PubMed ID: 3491094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.