BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 9219908)

  • 1. Effect of growth temperature on the biosynthesis of eukaryotic lipid molecular species by the cyanobacterium Spirulina platensis.
    Quoc KP; Dubacq JP
    Biochim Biophys Acta; 1997 Jun; 1346(3):237-46. PubMed ID: 9219908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of eukaryotic lipid molecular species by the cyanobacterium Spirulina platensis.
    Quoc KP; Dubacq JP; Justin AM; Demandre C; Mazliak P
    Biochim Biophys Acta; 1993 May; 1168(1):94-9. PubMed ID: 8504146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization Growth of Spirulina (Arthrospira) Platensis in Photobioreactor Under Varied Nitrogen Concentration for Maximized Biomass, Carotenoids and Lipid Contents.
    El Baky HHA; El Baroty GS; Mostafa EM
    Recent Pat Food Nutr Agric; 2020; 11(1):40-48. PubMed ID: 30588890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatty acids profile of Spirulina platensis grown under different temperatures and nitrogen concentrations.
    Colla LM; Bertolin TE; Costa JA
    Z Naturforsch C J Biosci; 2004; 59(1-2):55-9. PubMed ID: 15018053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-independent and -dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1 (Arthrospira sp. PCC 9438).
    Deshnium P; Paithoonrangsarid K; Suphatrakul A; Meesapyodsuk D; Tanticharoen M; Cheevadhanarak S
    FEMS Microbiol Lett; 2000 Mar; 184(2):207-13. PubMed ID: 10713422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of glycerol as carbon source on the growth, pigment and lipid production in Spirulina platensis.
    Narayan MS; Manoj GP; Vatchravelu K; Bhagyalakshmi N; Mahadevaswamy M
    Int J Food Sci Nutr; 2005 Nov; 56(7):521-8. PubMed ID: 16503562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green Microalga Chlorella kessleri and the Cyanobacterium Spirulina platensis.
    Ambrozova JV; Misurcova L; Vicha R; Machu L; Samek D; Baron M; Mlcek J; Sochor J; Jurikova T
    Molecules; 2014 Feb; 19(2):2344-60. PubMed ID: 24566307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on thermal adaptation in Tetrahymena membrane lipids. Positional distribution of fatty acid in diacyl- and alkyl-acyl-phosphatidylcholines and -(2-aminoethyl)phosphonolipids from cells grown at different temperatures.
    Watanabe T; Fukushima H; Nozawa Y
    Biochim Biophys Acta; 1980 Oct; 620(1):133-41. PubMed ID: 7417476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of growth temperature on lipid and fatty acid compositions in the blue-green algae, Anabaena variabilis and Anacystis nidulans.
    Sato N; Murata N; Miura Y; Ueta N
    Biochim Biophys Acta; 1979 Jan; 572(1):19-28. PubMed ID: 104734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycerolipid synthesis in Chlorella kessleri 11 h. II. Effect of the CO2 concentration during growth.
    Sato N; Tsuzuki M; Kawaguchi A
    Biochim Biophys Acta; 2003 Jul; 1633(1):35-42. PubMed ID: 12842193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosylglycerol in thermo-adaptation.
    Sato N; Murata N
    Biochim Biophys Acta; 1980 Aug; 619(2):353-66. PubMed ID: 6773583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alteration of fatty acid composition of LM cells by lipid supplementation and temperature.
    Ferguson KA; Glaser M; Bayer WH; Vagelos PR
    Biochemistry; 1975 Jan; 14(1):146-51. PubMed ID: 1167335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the '16:3' plant Arabidopsis thaliana.
    Browse J; Warwick N; Somerville CR; Slack CR
    Biochem J; 1986 Apr; 235(1):25-31. PubMed ID: 3741384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature-induced desaturation of fatty acids and expression of desaturase genes in the cyanobacterium Synechococcus sp. PCC 7002.
    Sakamoto T; Higashi S; Wada H; Murata N; Bryant DA
    FEMS Microbiol Lett; 1997 Jul; 152(2):313-20. PubMed ID: 9231425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation into liver microsomal lipids of linoleic and stearic acids and of their respective products of delta 6 and delta 9 desaturation, gamma-linolenic and oleic acids: effect of age and of blackcurrant seed oil.
    Ulmann L; Poisson JP; Blond JP; Bézard J
    Biochim Biophys Acta; 1991 Nov; 1086(2):230-6. PubMed ID: 1657182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of polyunsaturated fatty-acid synthesis enhances tolerance of a cyanobacterium, Cylindrospermopsis raciborskii, to low-temperature photoinhibition.
    Zsiros O; Várkonyi Z; Kovács A; Farkas T; Gombos Z; Garab G
    Indian J Biochem Biophys; 2000 Dec; 37(6):470-6. PubMed ID: 11355635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311.
    Huflejt ME; Tremolieres A; Pineau B; Lang JK; Hatheway J; Packer L
    Plant Physiol; 1990; 94(4):1512-21. PubMed ID: 11537468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations in lipid and fatty acid composition of the cyanobacterium Scytonema geitleri bharadwaja under water stress.
    Singh MK; Rai PK; Rai A; Singh S
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):51-8. PubMed ID: 25535713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utilization and desaturation of oleate and linoleate during glycerolipid biosynthesis in olive (Olea europaea L.) callus cultures.
    Hernández ML; Guschina IA; Martínez-Rivas JM; Mancha M; Harwood JL
    J Exp Bot; 2008; 59(9):2425-35. PubMed ID: 18515829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation in vitro of 14C fatty acids into bovine sebaceous gland and dermal lipids.
    McMaster JD; Jenkinson DM; Noble RC; Elder HY
    Res Vet Sci; 1985 May; 38(3):341-5. PubMed ID: 4012036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.