These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9219933)

  • 21. Differences in activity of cytochrome C oxidase in brain between sleep and wakefulness.
    Nikonova EV; Vijayasarathy C; Zhang L; Cater JR; Galante RJ; Ward SE; Avadhani NG; Pack AI
    Sleep; 2005 Jan; 28(1):21-7. PubMed ID: 15700717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Influence of cerebral and peripheral nitric oxide on sleep/wake cycle in the rat].
    Cespuglio R; Burlet S
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S20-5. PubMed ID: 11924033
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the dorsal paragigantocellular reticular nucleus in paradoxical (rapid eye movement) sleep generation: a combined electrophysiological and anatomical study in the rat.
    Goutagny R; Luppi PH; Salvert D; Lapray D; Gervasoni D; Fort P
    Neuroscience; 2008 Mar; 152(3):849-57. PubMed ID: 18308473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of somatosensory evoked potentials during wake-sleep states and spike-wave discharges in the rat.
    Shaw FZ; Lee SY; Chiu TH
    Sleep; 2006 Mar; 29(3):285-93. PubMed ID: 16553013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single unit activity of the suprachiasmatic nucleus and surrounding neurons during the wake-sleep cycle in mice.
    Sakai K
    Neuroscience; 2014 Feb; 260():249-64. PubMed ID: 24355494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of chloramphenicol on brain energy metabolism using 31P spectroscopy: influences on sleep-wake states in rat.
    Chahboune H; Mahdjoub R; Desgoutte P; Rousset C; Briguet A; Cespuglio R
    J Neurochem; 2008 Aug; 106(4):1552-62. PubMed ID: 18507739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chloramphenicol decreases brain glucose utilization and modifies the sleep-wake cycle architecture in rats.
    Moulin-Sallanon M; Millet P; Rousset C; Zimmer L; Debilly G; Petit JM; Cespuglio R; Magistretti P; Ibáñez V
    J Neurochem; 2005 Jun; 93(6):1623-32. PubMed ID: 15935079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of a 1-h immobilization stress on sleep and CLIP (ACTH(18-39)) brain contents in adrenalectomized rats.
    Bonnet C; Marinesco S; Debilly G; Kovalzon V; Cespuglio R
    Brain Res; 2000 Jan; 853(2):323-9. PubMed ID: 10640630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inactivation of the Tuberomammillary Nucleus by GABA
    Xie JF; Fan K; Wang C; Xie P; Hou M; Xin L; Cui GF; Wang LX; Shao YF; Hou YP
    Neurochem Res; 2017 Aug; 42(8):2314-2325. PubMed ID: 28365867
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiratory-related discharge of periaqueductal gray neurons during sleep-waking states.
    Ni HF; Zhang JX; Harper RM
    Brain Res; 1990 Mar; 511(2):319-25. PubMed ID: 2334849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats.
    Marrosu F; Portas C; Mascia MS; Casu MA; Fà M; Giagheddu M; Imperato A; Gessa GL
    Brain Res; 1995 Feb; 671(2):329-32. PubMed ID: 7743225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nociceptive responsiveness during slow-wave sleep and waking in the rat.
    Mason P; Escobedo I; Burgin C; Bergan J; Lee JH; Last EJ; Holub AL
    Sleep; 2001 Feb; 24(1):32-8. PubMed ID: 11204051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity of nucleus raphe pallidus neurons across the sleep-waking cycle in freely moving cats.
    Trulson ME; Trulson VM
    Brain Res; 1982 Apr; 237(1):232-7. PubMed ID: 7074357
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiovascular-related discharge of periaqueductal gray neurons during sleep-waking states.
    Ni HF; Zhang JX; Harper RM
    Brain Res; 1990 Nov; 532(1-2):242-8. PubMed ID: 2282517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioavailability of reduced nicotinamide-adenine-dinucleotide (NADH) in the central nervous system of the anaesthetized rat measured by laser-induced fluorescence spectroscopy.
    Rex A; Hentschke MP; Fink H
    Pharmacol Toxicol; 2002 Apr; 90(4):220-5. PubMed ID: 12076318
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis.
    Kametani H; Kawamura H
    Life Sci; 1990; 47(5):421-6. PubMed ID: 2395411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep-waking discharge profiles of dorsal raphe nucleus neurons in mice.
    Sakai K
    Neuroscience; 2011 Dec; 197():200-24. PubMed ID: 21958868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Release of endogenous serotonin from "encéphale isolé" cats. II - Correlations with raphe neuronal activity and sleep and wakefulness.
    Puizillout JJ; Gaudin-Chazal G; Daszuta A; Seyfritz N; Ternaux JP
    J Physiol (Paris); 1979; 75(5):531-7. PubMed ID: 533869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.