These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9219933)

  • 41. Influence of a 1 h immobilization stress on sleep states and corticotropin-like intermediate lobe peptide (CLIP or ACTH18-39, Ph-ACTH18-39) brain contents in the rat.
    Bonnet C; Léger L; Baubet V; Debilly G; Cespuglio R
    Brain Res; 1997 Mar; 751(1):54-63. PubMed ID: 9098568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Continuous recordings of brain regional circulation during sleep/wake state transitions in rats.
    Gerashchenko D; Matsumura H
    Am J Physiol; 1996 Apr; 270(4 Pt 2):R855-63. PubMed ID: 8967416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Serum hormone levels during sleep and wakefulness in the immature female rat.
    Kimura F; Kawakami M
    Neuroendocrinology; 1981 Nov; 33(5):276-83. PubMed ID: 7301049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamic changes of gamma activities of somatic cortical evoked potentials during wake-sleep states in rats.
    Shaw FZ; Chew JH
    Brain Res; 2003 Sep; 983(1-2):152-61. PubMed ID: 12914976
    [TBL] [Abstract][Full Text] [Related]  

  • 45. State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking.
    Koyama Y; Takahashi K; Kodama T; Kayama Y
    Neuroscience; 2003; 119(4):1209-19. PubMed ID: 12831874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sleep-wake study in an animal model of acute and chronic heat stress.
    Sinha RK; Ray AK
    Physiol Behav; 2006 Oct; 89(3):364-72. PubMed ID: 16899261
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Single unit recordings in the nuclei raphe dorsalis and magnus during the sleep-waking cycle of semi-chronic prepared cats.
    Cespuglio R; Faradji H; Gomez ME; Jouvet M
    Neurosci Lett; 1981 Jul; 24(2):133-8. PubMed ID: 7254710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Variations of hypothalamic and cortical prostaglandins and monoamines reveal transitions in arousal states: microdialysis study in the rat].
    Nicolaidis S; Gerozissis K; Orosco M
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S26-33. PubMed ID: 11924034
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MDMA treatment 6 months earlier attenuates the effects of CP-94,253, a 5-HT1B receptor agonist, on motor control but not sleep inhibition.
    Gyongyosi N; Balogh B; Kirilly E; Kitka T; Kantor S; Bagdy G
    Brain Res; 2008 Sep; 1231():34-46. PubMed ID: 18638459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Changes in reactivity of rat visual system during wake-sleep cycle].
    Rallo JL
    C R Seances Soc Biol Fil; 1975; 169(1):178-84. PubMed ID: 126727
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Evolution of visual evoked responses during various states of vigilance in Papio papio (author's transl)].
    Vuillon-Cacciuttolo G; Balzamo E; Naquet R
    Brain Res; 1975 Dec; 100(3):509-21. PubMed ID: 172195
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changes in the sleep-wake cycle architecture and cortical nitric oxide release during ageing in the rat.
    Clément P; Gharib A; Cespuglio R; Sarda N
    Neuroscience; 2003; 116(3):863-70. PubMed ID: 12573725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in the serotonergic system during the sleep-wake cycle: simultaneous polygraphic and voltammetric recordings in hypothalamus using a telemetry system.
    Imeri L; De Simoni MG; Giglio R; Clavenna A; Mancia M
    Neuroscience; 1994 Jan; 58(2):353-8. PubMed ID: 7512239
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evidence that brain prostaglandin E2 is involved in physiological sleep-wake regulation in rats.
    Matsumura H; Honda K; Choi WS; Inoué S; Sakai T; Hayaishi O
    Proc Natl Acad Sci U S A; 1989 Jul; 86(14):5666-9. PubMed ID: 2748610
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theta activity in local field potential of the ventral tegmental area in sleeping and waking rats.
    Orzeł-Gryglewska J; Matulewicz P; Jurkowlaniec E
    Behav Brain Res; 2014 May; 265():84-92. PubMed ID: 24569012
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Changes in brain glycogen during slow-wave sleep in the rat.
    Karnovsky ML; Reich P; Anchors JM; Burrows BL
    J Neurochem; 1983 Nov; 41(5):1498-501. PubMed ID: 6619882
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat.
    Meeren HK; van Cappellen van Walsum AM; van Luijtelaar EL; Coenen AM
    Brain Res; 2001 Apr; 898(2):321-31. PubMed ID: 11306019
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physiological properties of raphe magnus neurons during sleep and waking.
    Leung CG; Mason P
    J Neurophysiol; 1999 Feb; 81(2):584-95. PubMed ID: 10036262
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differential amplitude modulation of auditory evoked cortical potentials associated with brain state in the freely moving rhesus monkey.
    Tian S; Qi H; Wang J; Cai J; Ma Y
    Neurosci Lett; 2002 Oct; 331(3):159-62. PubMed ID: 12383921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.