These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9220087)

  • 81. Frontal-striatal dysfunction during planning in obsessive-compulsive disorder.
    van den Heuvel OA; Veltman DJ; Groenewegen HJ; Cath DC; van Balkom AJ; van Hartskamp J; Barkhof F; van Dyck R
    Arch Gen Psychiatry; 2005 Mar; 62(3):301-9. PubMed ID: 15753243
    [TBL] [Abstract][Full Text] [Related]  

  • 82. The Danish PET/depression project: performance on Stroop's test linked to white matter lesions in the brain.
    Videbech P; Ravnkilde B; Gammelgaard L; Egander A; Clemmensen K; Rasmussen NA; Gjedde A; Rosenberg R
    Psychiatry Res; 2004 Feb; 130(2):117-30. PubMed ID: 15033182
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A role for the hippocampus in card sorting?
    Corcoran R; Upton D
    Cortex; 1993 Jun; 29(2):293-304. PubMed ID: 8348826
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Prose memory in patients with idiopathic Parkinson's disease.
    Lee TM; Chan CC; Ho SL; Li LS
    Parkinsonism Relat Disord; 2005 Nov; 11(7):453-8. PubMed ID: 16157503
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Implicit sequence learning in obsessive-compulsive disorder: further support for the fronto-striatal dysfunction model.
    Kathmann N; Rupertseder C; Hauke W; Zaudig M
    Biol Psychiatry; 2005 Aug; 58(3):239-44. PubMed ID: 15939407
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Callosal and cortical contribution to procedural learning.
    de Guise E; del Pesce M; Foschi N; Quattrini A; Papo I; Lassonde M
    Brain; 1999 Jun; 122 ( Pt 6)():1049-62. PubMed ID: 10356058
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Frontal-lobe cognitive dysfunction in conduct disorder adolescents.
    Lueger RJ; Gill KJ
    J Clin Psychol; 1990 Nov; 46(6):696-706. PubMed ID: 2286660
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Functional MRI study of a serial reaction time task in Huntington's disease.
    Kim JS; Reading SA; Brashers-Krug T; Calhoun VD; Ross CA; Pearlson GD
    Psychiatry Res; 2004 May; 131(1):23-30. PubMed ID: 15246452
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Analysis of repetitive and nonrepetitive sequential arm movements in patients with Parkinson's disease.
    Agostino R; Berardelli A; Formica A; Stocchi F; Accornero N; Manfredi M
    Mov Disord; 1994 May; 9(3):311-4. PubMed ID: 8041371
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Contribution of the right frontal lobe to the encoding and recall of kinesthetic distance information.
    Leonard G; Milner B
    Neuropsychologia; 1991; 29(1):47-58. PubMed ID: 1901965
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Alcohol-induced suppression of BOLD activity during goal-directed visuomotor performance.
    Van Horn JD; Yanos M; Schmitt PJ; Grafton ST
    Neuroimage; 2006 Jul; 31(3):1209-21. PubMed ID: 16527492
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Word list learning and prediction of recall after frontal lobe lesions.
    Vilkki J; Servo A; Surma-aho O
    Neuropsychology; 1998 Apr; 12(2):268-77. PubMed ID: 9556773
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The role of the basal ganglia and its cortical connections in sequence learning: evidence from implicit and explicit sequence learning in Parkinson's disease.
    Wilkinson L; Khan Z; Jahanshahi M
    Neuropsychologia; 2009 Oct; 47(12):2564-73. PubMed ID: 19447121
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Patients with Parkinson's disease learn to control complex systems via procedural as well as non-procedural learning.
    Osman M; Wilkinson L; Beigi M; Castaneda CS; Jahanshahi M
    Neuropsychologia; 2008; 46(9):2355-63. PubMed ID: 18440038
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Attention modulation regulates both motor and non-motor performance: a high-density EEG study in Parkinson's disease.
    Perfetti B; Moisello C; Lanzafame S; Varanese S; Landsness EC; Onofrj M; Di Rocco A; Tononi G; Ghilardi MF
    Arch Ital Biol; 2010 Sep; 148(3):279-88. PubMed ID: 21175014
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Striatal lesions in the mouse disrupt acquisition and retention, but not implicit learning, in the SILT procedural motor learning task.
    Brooks SP; Trueman RC; Dunnett SB
    Brain Res; 2007 Dec; 1185():179-88. PubMed ID: 17964549
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Hippocampal contribution to early and later stages of implicit motor sequence learning.
    Gheysen F; Van Opstal F; Roggeman C; Van Waelvelde H; Fias W
    Exp Brain Res; 2010 May; 202(4):795-807. PubMed ID: 20195849
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Verbal implicit sequence learning in persons who stutter and persons with Parkinson's disease.
    Smits-Bandstra S; Gracco V
    J Mot Behav; 2013; 45(5):381-93. PubMed ID: 23844763
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Measuring implicit sequence learning and dual task ability in mild to moderate Parkinson´s disease: A feasibility study.
    Freidle M; Johansson H; Lebedev AV; Ekman U; Lövdén M; Franzén E
    PLoS One; 2021; 16(5):e0251849. PubMed ID: 34019565
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Neurophysiological changes in visuomotor sequence learning provide insight in general learning processes: Measures of brain activity, skin conductance, heart rate and respiration.
    Tinga AM; de Back TT; Louwerse MM
    Int J Psychophysiol; 2020 May; 151():40-48. PubMed ID: 32119886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.