BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9220346)

  • 1. Developmental regulation of the alpha-glycerophosphate shuttle in porcine myocardium.
    Scholz TD; Koppenhafer SL; TenEyck CJ; Schutte BC
    J Mol Cell Cardiol; 1997 Jun; 29(6):1605-13. PubMed ID: 9220346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing equivalent shuttles in developing porcine myocardium: enhanced capacity in the newborn heart.
    Scholz TD; Koppenhafer SL
    Pediatr Res; 1995 Aug; 38(2):221-7. PubMed ID: 7478820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alpha glycerophosphate cycle in Drosophila melanogaster VI. structure and evolution of enzyme paralogs in the genus Drosophila.
    Carmon A; MacIntyre R
    J Hered; 2010; 101(2):225-34. PubMed ID: 19995805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thyroid hormone regulation of the NADH shuttles in liver and cardiac mitochondria.
    Scholz TD; TenEyck CJ; Schutte BC
    J Mol Cell Cardiol; 2000 Jan; 32(1):1-10. PubMed ID: 10652185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria.
    Scholz TD; Koppenhafer SL; tenEyck CJ; Schutte BC
    Am J Physiol; 1998 Mar; 274(3):C780-8. PubMed ID: 9530110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of H(2)O(2) generation by calcium in brain mitochondria respiring on alpha-glycerophosphate.
    Tretter L; Takacs K; Kövér K; Adam-Vizi V
    J Neurosci Res; 2007 Nov; 85(15):3471-9. PubMed ID: 17600838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a mitochondrial glycerol-3-phosphate dehydrogenase from Arabidopsis thaliana: evidence for a mitochondrial glycerol-3-phosphate shuttle in plants.
    Shen W; Wei Y; Dauk M; Zheng Z; Zou J
    FEBS Lett; 2003 Feb; 536(1-3):92-6. PubMed ID: 12586344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosolic alpha-glycerophosphate and lactate dehydrogenase in the lung in endotoxin shock.
    Sayeed MM; Krumholz MP
    Circ Shock; 1982; 9(1):1-6. PubMed ID: 6802512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence of Atlantic cod (Gadus morhua) GLUT4, GLUT2 and GPDH: Developmental stage expression, tissue expression and relationship to starvation-induced changes in blood glucose.
    Hall JR; Short CE; Driedzic WR
    J Exp Biol; 2006 Nov; 209(Pt 22):4490-502. PubMed ID: 17079719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal freeze resistance of rainbow smelt (Osmerus mordax) is generated by differential expression of glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, and antifreeze protein genes.
    Liebscher RS; Richards RC; Lewis JM; Short CE; Muise DM; Driedzic WR; Ewart KV
    Physiol Biochem Zool; 2006; 79(2):411-23. PubMed ID: 16555199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis, tissue profiles, and seasonal patterns of cytosolic and mitochondrial GPDH in freeze-resistant rainbow smelt (Osmerus mordax).
    Robinson JL; Hall JR; Charman M; Ewart KV; Driedzic WR
    Physiol Biochem Zool; 2011; 84(4):363-76. PubMed ID: 21743250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of rat skeletal muscle glycerophosphate shuttle.
    Scisłowski PW; Swierczyński J; Aleksandrowicz Z; Zydowo M
    Mol Cell Biochem; 1979 Sep; 27(1):3-6. PubMed ID: 229405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of glycerol-3-phosphate in porcine and bovineadrenal cortex mitochondria.
    Popinigis J; Antosiewicz J; Kaczor JJ; Rauchová H; Lenaz G
    Acta Biochim Pol; 2004; 51(4):1075-80. PubMed ID: 15625580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of a FAD-GPDH gene encoding a mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase from Dunaliella salina.
    Yang W; Cao Y; Sun X; Huang F; He Q; Qiao D; Bai L
    J Basic Microbiol; 2007 Jun; 47(3):266-74. PubMed ID: 17518420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Impairment of glycerophosphate and glycerol turnover in myocardium under conditions of experimental pancreatitis].
    Garibian GG; Kazarian PA; Simavorian PS
    Vopr Med Khim; 1981; 27(3):337-9. PubMed ID: 6792779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles.
    Rupert BE; Segar JL; Schutte BC; Scholz TD
    J Mol Cell Cardiol; 2000 Dec; 32(12):2287-97. PubMed ID: 11113004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L
    Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD+ ratio provides evidence of a mitochondrial glycerol-3-phosphate shuttle in Arabidopsis.
    Shen W; Wei Y; Dauk M; Tan Y; Taylor DC; Selvaraj G; Zou J
    Plant Cell; 2006 Feb; 18(2):422-41. PubMed ID: 16415206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin of alpha-glycerophosphate dehydrogenase isozymes in Drosophila melanogaster and their functional relationship in the alpha-glycerophosphate cycle.
    Bewley GC; Lucchesi JC
    Biochem Genet; 1977 Apr; 15(3-4):235-51. PubMed ID: 405967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The noninvolvement of MDH as NAD-oxidoreductase shuttle in rat liver peroxisomes.
    Horie S; Ishii H; Itoh S; Suga T
    Biochem Int; 1984 Mar; 8(3):353-9. PubMed ID: 6477606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.