BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9220464)

  • 1. Selegiline induces dopamine release through ATP-sensitive potassium channels in the rat caudate-putamen in vitro.
    Neusch C; Schnierle S; Moser A
    Neurochem Int; 1997 Aug; 31(2):307-11. PubMed ID: 9220464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dopamine D2 receptor agonist alpha-dihydroergocryptine modulates voltage-gated sodium channels in the rat caudate-putamen.
    Neusch C; Böhme V; Riesland N; Althaus M; Moser A
    J Neural Transm (Vienna); 2000; 107(5):531-41. PubMed ID: 11072749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of selective monoamine oxidase inhibitors on the in vivo release and metabolism of dopamine in the rat striatum.
    Butcher SP; Fairbrother IS; Kelly JS; Arbuthnott GW
    J Neurochem; 1990 Sep; 55(3):981-8. PubMed ID: 2117053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-sensitive K+ channel openers block sulpiride-induced dopamine release in the rat striatum.
    Tanaka T; Yoshida M; Yokoo H; Mizoguchi K; Tanaka M
    Eur J Pharmacol; 1996 Feb; 297(1-2):35-41. PubMed ID: 8851163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G proteins modulate D2 receptor-coupled K(ATP) channels in rat dopaminergic terminals.
    Neusch C; Runde D; Moser A
    Neurochem Res; 2000 Dec; 25(12):1521-6. PubMed ID: 11152380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic L-type Ca(2)+ channels on excessive dopamine release from rat caudate putamen.
    Okita M; Watanabe Y; Taya K; Utsumi H; Hayashi T
    Physiol Behav; 2000 Mar; 68(5):641-9. PubMed ID: 10764893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of long-term treatment with selective monoamine oxidase A and B inhibitors on dopamine release from rat striatum in vivo.
    Lamensdorf I; Youdim MB; Finberg JP
    J Neurochem; 1996 Oct; 67(4):1532-9. PubMed ID: 8858937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of ATP-sensitive potassium channels in striatal dopamine release: an in vivo microdialysis study.
    Tanaka T; Yoshida M; Yokoo H; Mizoguchi K; Tanaka M
    Pharmacol Biochem Behav; 1995 Dec; 52(4):831-5. PubMed ID: 8587927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional differences in evoked dopamine efflux in brain slices of rat anterior and posterior caudate putamen.
    Patel J; Trout SJ; Kruk ZL
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Sep; 346(3):267-76. PubMed ID: 1407013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different effects of 1-methyl-4-phenyl-pyridinium (MPP+) on monoamine oxidase of dopaminergic terminals in caudate nucleus slices from pigmented and from albino rabbits.
    Lupp A; Lücking CH; Hedler L; Feuerstein TJ
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Feb; 347(2):141-6. PubMed ID: 8474535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat.
    Cenci MA; Kalén P; Mandel RJ; Björklund A
    Brain Res; 1992 May; 581(2):217-28. PubMed ID: 1393530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release.
    Avshalumov MV; Rice ME
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11729-34. PubMed ID: 13679582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative comparison on the effects of benztropine, cocaine and nomifensine on electrically evoked dopamine overflow and rate of re-uptake in the caudate putamen and nucleus accumbens in the rat brain slice.
    Wieczorek WJ; Kruk ZL
    Brain Res; 1994 Sep; 657(1-2):42-50. PubMed ID: 7820642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of isatin on rotational behavior and DA levels in caudate putamen in Parkinsonian rats.
    Zhou Y; Zhao ZQ; Xie JX
    Brain Res; 2001 Oct; 917(1):127-32. PubMed ID: 11602237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of MAO-B by (-)-deprenyl alters dopamine metabolism in the macaque (Macaca facicularis) brain.
    Paterson IA; Davis BA; Durden DA; Juorio AV; Yu PH; Ivy G; Milgram W; Mendonca A; Wu P; Boulton AA
    Neurochem Res; 1995 Dec; 20(12):1503-10. PubMed ID: 8789614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective monoamine oxidase subtype inhibition and striatal extracellular dopamine in the guinea-pig.
    Ilani T; Lamensdorf I; Finberg JP
    Br J Pharmacol; 2000 Aug; 130(8):1992-8. PubMed ID: 10952692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoamine oxidase inhibition causes a long-term prolongation of the dopamine-induced responses in rat midbrain dopaminergic cells.
    Mercuri NB; Scarponi M; Bonci A; Siniscalchi A; Bernardi G
    J Neurosci; 1997 Apr; 17(7):2267-72. PubMed ID: 9065488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (-)-Deprenyl inhibits tyramine-induced noradrenaline release, but not tyramine-induced dopamine release or potassium-induced noradrenaline release, from rat brain synaptosomes.
    Takahata K; Shimazu S; Yoneda F
    Pharmacol Res; 2004 Mar; 49(3):253-8. PubMed ID: 14726221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of monoamine uptake inhibitors given early postnatally on monoamines in the brain stem, caudate/putamen and cortex, and on dopamine D1 and D2 receptors in the caudate/putamen.
    Hilakivi I; Ahtee L; Rinne JO; Taira T; Attila LM; Marjamaki P
    J Neural Transm Gen Sect; 1995; 102(2):139-48. PubMed ID: 8748678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deprenyl alters behavior and caudate dopamine through an amphetamine-like action.
    Okuda C; Segal DS; Kuczenski R
    Pharmacol Biochem Behav; 1992 Dec; 43(4):1075-80. PubMed ID: 1475291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.