These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 9220960)
41. Thermodynamics and kinetics of unfolding of the thermostable trimeric adenylate kinase from the archaeon Sulfolobus acidocaldarius. Backmann J; Schäfer G; Wyns L; Bönisch H J Mol Biol; 1998 Dec; 284(3):817-33. PubMed ID: 9826518 [TBL] [Abstract][Full Text] [Related]
42. Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein-protein binding sites: a molecular dynamics study. Gough CA; Gojobori T; Imanishi T Proteins; 2007 Jan; 66(1):69-86. PubMed ID: 17063491 [TBL] [Abstract][Full Text] [Related]
43. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state. Wallgren M; Adén J; Pylypenko O; Mikaelsson T; Johansson LB; Rak A; Wolf-Watz M J Mol Biol; 2008 Jun; 379(4):845-58. PubMed ID: 18471828 [TBL] [Abstract][Full Text] [Related]
44. Heterologous expression of 5'-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus: characterization of the recombinant protein and involvement of disulfide bonds in thermophilicity and thermostability. Cacciapuoti G; Fusco S; Caiazzo N; Zappia V; Porcelli M Protein Expr Purif; 1999 Jun; 16(1):125-35. PubMed ID: 10336870 [TBL] [Abstract][Full Text] [Related]
45. Structural features responsible for kinetic thermal stability of a carboxypeptidase from the archaebacterium Sulfolobus solfataricus. Villa A; Zecca L; Fusi P; Colombo S; Tedeschi G; Tortora P Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):827-31. PubMed ID: 8240298 [TBL] [Abstract][Full Text] [Related]
46. Effect of temperature on the propylamine transferase from Sulfolobus solfataricus, an extreme thermophilic archaebacterium. 1. Conformational behavior of the oligomeric enzyme in solution. Facchiano F; Ragone R; Porcelli M; Cacciapuoti G; Colonna G Eur J Biochem; 1992 Mar; 204(2):473-82. PubMed ID: 1541263 [TBL] [Abstract][Full Text] [Related]
47. Molecular properties of glutamate dehydrogenase from the extreme thermophilic archaebacterium Sulfolobus solfataricus. Facchiano AM; Ragone R; Consalvi V; Scandurra R; De Rosa M; Colonna G Biochim Biophys Acta; 1995 Sep; 1251(2):170-6. PubMed ID: 7669806 [TBL] [Abstract][Full Text] [Related]
48. Ribonucleases from the extreme thermophilic archaebacterium S. solfataricus. Fusi P; Tedeschi G; Aliverti A; Ronchi S; Tortora P; Guerritore A Eur J Biochem; 1993 Jan; 211(1-2):305-10. PubMed ID: 8425540 [TBL] [Abstract][Full Text] [Related]
49. Stability of a thermophilic TIM-barrel enzyme: indole-3-glycerol phosphate synthase from the thermophilic archaeon Sulfolobus solfataricus. Andreotti G; Cubellis MV; Palo MD; Fessas D; Sannia G; Marino G Biochem J; 1997 Apr; 323 ( Pt 1)(Pt 1):259-64. PubMed ID: 9173891 [TBL] [Abstract][Full Text] [Related]
50. Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii. Angkawidjaja C; Koga Y; Takano K; Kanaya S FEBS J; 2012 Sep; 279(17):3071-84. PubMed ID: 22748144 [TBL] [Abstract][Full Text] [Related]
51. Stability of aspartate aminotransferase from Sulfolobus solfataricus. Arnone MI; Birolo L; Pascarella S; Cubellis MV; Bossa F; Sannia G; Marino G Protein Eng; 1997 Mar; 10(3):237-48. PubMed ID: 9153089 [TBL] [Abstract][Full Text] [Related]
52. Homology modeling, molecular dynamics simulations, and analysis of CYP119, a P450 enzyme from extreme acidothermophilic archaeon Sulfolobus solfataricus. Chang YT; Loew G Biochemistry; 2000 Mar; 39(10):2484-98. PubMed ID: 10704198 [TBL] [Abstract][Full Text] [Related]
53. Structure-function studies on beta-glycosidase from Sulfolobus solfataricus. Molecular bases of thermostability. D'Auria S; Moracci M; Febbraio F; Tanfani F; Nucci R; Rossi M Biochimie; 1998 Nov; 80(11):949-57. PubMed ID: 9893955 [TBL] [Abstract][Full Text] [Related]
54. Pressure and temperature as tools for investigating the role of individual non-covalent interactions in enzymatic reactions Sulfolobus solfataricus carboxypeptidase as a model enzyme. Occhipinti E; Bec N; Gambirasio B; Baietta G; Martelli PL; Casadio R; Balny C; Lange R; Tortora P Biochim Biophys Acta; 2006 Mar; 1764(3):563-72. PubMed ID: 16446132 [TBL] [Abstract][Full Text] [Related]
55. Expression of a synthetic gene encoding P2 ribonuclease from the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus in mesophylic hosts. Fusi P; Grisa M; Mombelli E; Consonni R; Tortora P; Vanoni M Gene; 1995 Feb; 154(1):99-103. PubMed ID: 7867957 [TBL] [Abstract][Full Text] [Related]
56. Aromatic stacking as a determinant of the thermal stability of CYP119 from Sulfolobus solfataricus. Puchkaev AV; Koo LS; Ortiz de Montellano PR Arch Biochem Biophys; 2003 Jan; 409(1):52-8. PubMed ID: 12464244 [TBL] [Abstract][Full Text] [Related]
57. Exposure of hydrophobic core in human prion protein pathogenic mutant H187R. Zhong L J Biomol Struct Dyn; 2010 Dec; 28(3):355-61. PubMed ID: 20919751 [TBL] [Abstract][Full Text] [Related]
58. [Physico-chemical properties of ribonuclease A modified with pyridoxal-5'-phosphate]. Dudkin SM; Karabashian LV; Borisova SN; Shliapnikov SV; Karpeĭskiĭ MIa Mol Biol (Mosk); 1975; 9(1):36-47. PubMed ID: 1219371 [TBL] [Abstract][Full Text] [Related]