BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 9220992)

  • 1. Caged NADP and NAD. Synthesis and characterization of functionally distinct caged compounds.
    Cohen BE; Stoddard BL; Koshland DE
    Biochemistry; 1997 Jul; 36(29):9035-44. PubMed ID: 9220992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, kinetics, and structural studies of a photolabile caged isocitrate: a catalytic trigger for isocitrate dehydrogenase.
    Brubaker MJ; Dyer DH; Stoddard B; Koshland DE
    Biochemistry; 1996 Mar; 35(9):2854-64. PubMed ID: 8608121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of adenine binding domain peptides of the NADP+ active site within porcine heart NADP(+)-dependent isocitrate dehydrogenase.
    Sankaran B; Chavan AJ; Haley BE
    Biochemistry; 1996 Oct; 35(42):13501-10. PubMed ID: 8885829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Millisecond Laue structures of an enzyme-product complex using photocaged substrate analogs.
    Stoddard BL; Cohen BE; Brubaker M; Mesecar AD; Koshland DE
    Nat Struct Biol; 1998 Oct; 5(10):891-7. PubMed ID: 9783749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The selective cause of an ancient adaptation.
    Zhu G; Golding GB; Dean AM
    Science; 2005 Feb; 307(5713):1279-82. PubMed ID: 15653464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase.
    Imabayashi F; Aich S; Prasad L; Delbaere LT
    Proteins; 2006 Apr; 63(1):100-12. PubMed ID: 16416443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 8-(4-Bromo-2,3-dioxobutylthio)NAD: a new affinity label for NAD-specific isocitrate dehydrogenase.
    Kumar A; Colman RF
    Arch Biochem Biophys; 1994 Feb; 308(2):357-66. PubMed ID: 8109965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus.
    Steen IH; Lien T; Madsen MS; Birkeland NK
    Arch Microbiol; 2002 Oct; 178(4):297-300. PubMed ID: 12209263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP.
    Liu J; Lou Y; Yokota H; Adams PD; Kim R; Kim SH
    J Mol Biol; 2005 Nov; 354(2):289-303. PubMed ID: 16242716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of a caged receptor ligand suitable for chemical kinetic investigations of the glycine receptor in the 3-microseconds time domain.
    Niu L; Wieboldt R; Ramesh D; Carpenter BK; Hess GP
    Biochemistry; 1996 Jun; 35(25):8136-42. PubMed ID: 8679565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and quantum chemical analysis of NAD+-dependent isocitrate dehydrogenase: hydride transfer and co-factor specificity.
    Imada K; Tamura T; Takenaka R; Kobayashi I; Namba K; Inagaki K
    Proteins; 2008 Jan; 70(1):63-71. PubMed ID: 17634983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of NAD-dependent isocitrate dehydrogenase by the 2',3'-dialdehyde derivatives of NAD, NADH, NADP, and NADPH.
    Saha A; Colman RF
    Arch Biochem Biophys; 1988 Aug; 264(2):665-77. PubMed ID: 3401017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of the dI2dIII1 complex of proton-translocating transhydrogenase with bound, inactive analogues of NADH and NADPH reveal active site geometries.
    Bhakta T; Whitehead SJ; Snaith JS; Dafforn TR; Wilkie J; Rajesh S; White SA; Jackson JB
    Biochemistry; 2007 Mar; 46(11):3304-18. PubMed ID: 17323922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases.
    Kalinina OV; Gelfand MS
    Proteins; 2006 Sep; 64(4):1001-9. PubMed ID: 16767773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a 'caged' analogue to study the traffic of choline within acetylcholinesterase by kinetic crystallography.
    Colletier JP; Royant A; Specht A; Sanson B; Nachon F; Masson P; Zaccai G; Sussman JL; Goeldner M; Silman I; Bourgeois D; Weik M
    Acta Crystallogr D Biol Crystallogr; 2007 Nov; 63(Pt 11):1115-28. PubMed ID: 18007027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P; Colman RF
    Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability.
    Karlström M; Stokke R; Steen IH; Birkeland NK; Ladenstein R
    J Mol Biol; 2005 Jan; 345(3):559-77. PubMed ID: 15581899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic characterization and functional implication of two structurally different isocitrate dehydrogenases from Xylella fastidiosa.
    Lv P; Tang W; Wang P; Cao Z; Zhu G
    Biotechnol Appl Biochem; 2018 Mar; 65(2):230-237. PubMed ID: 28220528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Induced reversible structural interconversion of human mitochondrial NAD(P)+-dependent malic enzyme.
    Kuo CW; Hung HC; Tong L; Chang GG
    Proteins; 2004 Feb; 54(3):404-11. PubMed ID: 14747989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of NAD+- and NADP+-linked isocitrate dehydrogenase in the obligate methylotrophic bacterium Pseudomonas W6.
    Hofmann KH; Babel W
    Z Allg Mikrobiol; 1980; 20(6):399-404. PubMed ID: 7424052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.