These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 9221837)
1. A physiologically based pharmacokinetic and pharmacodynamic model for paraoxon in rainbow trout. Abbas R; Hayton WL Toxicol Appl Pharmacol; 1997 Jul; 145(1):192-201. PubMed ID: 9221837 [TBL] [Abstract][Full Text] [Related]
2. Toxicokinetics of parathion and paraoxon in rainbow trout after intravascular administration and water exposure. Abbas R; Schultz IR; Doddapaneni S; Hayton WL Toxicol Appl Pharmacol; 1996 Jan; 136(1):194-9. PubMed ID: 8560474 [TBL] [Abstract][Full Text] [Related]
3. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat. Milatovic D; Dettbarn WD Toxicol Appl Pharmacol; 1996 Jan; 136(1):20-8. PubMed ID: 8560475 [TBL] [Abstract][Full Text] [Related]
4. Kinetic analysis of the in vitro inhibition, aging, and reactivation of brain acetylcholinesterase from rat and channel catfish by paraoxon and chlorpyrifos-oxon. Carr RL; Chambers JE Toxicol Appl Pharmacol; 1996 Aug; 139(2):365-73. PubMed ID: 8806854 [TBL] [Abstract][Full Text] [Related]
5. The effect of high and low dosages of paraoxon in beta-naphthoflavone-treated rats. Watson AM; Chambers JE J Biochem Toxicol; 1996; 11(6):263-8. PubMed ID: 9176738 [TBL] [Abstract][Full Text] [Related]
6. An age-dependent physiologically based pharmacokinetic/pharmacodynamic model for the organophosphorus insecticide chlorpyrifos in the preweanling rat. Timchalk C; Kousba AA; Poet TS Toxicol Sci; 2007 Aug; 98(2):348-65. PubMed ID: 17504771 [TBL] [Abstract][Full Text] [Related]
7. Interactive toxicity of the organophosphorus insecticides chlorpyrifos and methyl parathion in adult rats. Karanth S; Liu J; Olivier K; Pope C Toxicol Appl Pharmacol; 2004 Apr; 196(2):183-90. PubMed ID: 15081265 [TBL] [Abstract][Full Text] [Related]
8. The toxic and accumulative effects of short-term exposure to cadmium in rainbow trout (Oncorhynchus mykiss). Melgar MJ; Perez M; Garcia MA; Alonso J; Miguez B Vet Hum Toxicol; 1997 Apr; 39(2):79-83. PubMed ID: 9080631 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of rainbow trout acetylcholinesterase by aqueous and suspended particle-associated organophosphorous insecticides. Sturm A; Radau TS; Hahn T; Schulz R Chemosphere; 2007 Jun; 68(4):605-12. PubMed ID: 17418885 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity analysis on a physiologically-based pharmacokinetic and pharmacodynamic model for diisopropylfluorophosphate-induced toxicity in mice and rats. Chen K; Teo S; Seng KY Toxicol Mech Methods; 2009 Oct; 19(8):486-97. PubMed ID: 19788408 [TBL] [Abstract][Full Text] [Related]
11. Alterations in physiological parameters of rainbow trout (Oncorhynchus mykiss) with exposure to copper and copper/zinc mixtures. Dethloff GM; Schlenk D; Hamm JT; Bailey HC Ecotoxicol Environ Saf; 1999 Mar; 42(3):253-64. PubMed ID: 10090814 [TBL] [Abstract][Full Text] [Related]
12. Inhibitory effects on esterase enzymes buche and ache in rainbow trout (Oncorhyncus mykiss) produced by the slow release insecticide chitosan diethyl phosphate. Placencia J; Rudolph A; Cabrera G; Cárdenas G; Yévenes M J Environ Sci Health B; 2005; 40(5):761-8. PubMed ID: 16190020 [TBL] [Abstract][Full Text] [Related]
13. In vivo interaction between chlorpyrifos and parathion in adult rats: sequence of administration can markedly influence toxic outcome. Karanth S; Olivier K; Liu J; Pope C Toxicol Appl Pharmacol; 2001 Dec; 177(3):247-55. PubMed ID: 11749124 [TBL] [Abstract][Full Text] [Related]
15. Physiologically based pharmacokinetic model for the inhibition of acetylcholinesterase by organophosphate esters. Gearhart JM; Jepson GW; Clewell HJ; Andersen ME; Conolly RB Environ Health Perspect; 1994 Dec; 102 Suppl 11(Suppl 11):51-60. PubMed ID: 7737042 [TBL] [Abstract][Full Text] [Related]
16. Response and recovery of brain acetylcholinesterase activity in the European eel, Anguilla anguilla, exposed to fenitrothion. Sancho E; Ferrando MD; Andreu E Ecotoxicol Environ Saf; 1997 Dec; 38(3):205-9. PubMed ID: 9469870 [TBL] [Abstract][Full Text] [Related]
17. A physiologically based pharmacokinetic/pharmacodynamic model for carbofuran in Sprague-Dawley rats using the exposure-related dose estimating model. Zhang X; Tsang AM; Okino MS; Power FW; Knaak JB; Harrison LS; Dary CC Toxicol Sci; 2007 Dec; 100(2):345-59. PubMed ID: 17804862 [TBL] [Abstract][Full Text] [Related]
18. Physiologically based pharmacokinetic/pharmacodynamic model for the organophosphorus pesticide diazinon. Poet TS; Kousba AA; Dennison SL; Timchalk C Neurotoxicology; 2004 Dec; 25(6):1013-30. PubMed ID: 15474619 [TBL] [Abstract][Full Text] [Related]
19. Muscular and brain cholinesterase sensitivities to azinphos methyl and carbaryl in the juvenile rainbow trout Oncorhynchus mykiss. Ferrari A; Venturino A; Pechén de D'Angelo AM Comp Biochem Physiol C Toxicol Pharmacol; 2007 Sep; 146(3):308-13. PubMed ID: 17509940 [TBL] [Abstract][Full Text] [Related]
20. Development of a source-to-outcome model for dietary exposures to insecticide residues: an example using chlorpyrifos. Hinderliter PM; Price PS; Bartels MJ; Timchalk C; Poet TS Regul Toxicol Pharmacol; 2011 Oct; 61(1):82-92. PubMed ID: 21722690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]