BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9222811)

  • 1. Three-dimensional temperature control of palladium-nickel thermoseeds: a computer aided and experimental evaluation.
    van Wieringen N; van Dijk JD; van Veldhuizen J; Nieuwenhuys GJ
    Int J Hyperthermia; 1997; 13(3):269-86. PubMed ID: 9222811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power absorption and temperature control of multi-filament palladium-nickel thermoseeds for interstitial hyperthermia.
    van Wieringen N; van Dijk JD; Nieuwenhuys GJ; Snel CE; Cetas TC
    Phys Med Biol; 1996 Nov; 41(11):2367-80. PubMed ID: 8938032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of catheters and coatings on the performance of palladium-nickel thermoseeds: evaluation and design of implantation techniques.
    van Wieringen N; van Dijk JD; van Veldhuizen J; Nieuwenhuys GJ
    Int J Hyperthermia; 1997; 13(2):187-204. PubMed ID: 9147145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of PdNi thermoseeds for interstitial hyperthermia.
    Meijer JG; van Wieringen N; Koedooder C; Nieuwenhuys GJ; van Dijk JD
    Med Phys; 1995 Jan; 22(1):101-4. PubMed ID: 7715561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of heating power generated from ferromagnetic thermal seed (PdCo-PdNi-CuNi) alloys used as interstitial hyperthermia implants.
    El-Sayed AH; Aly AA; EI-Sayed NI; Mekawy MM; EI-Gendy AA
    J Mater Sci Mater Med; 2007 Mar; 18(3):523-8. PubMed ID: 17334704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose uniformity of ferromagnetic seed implants in tissue with discrete vasculature: a numerical study on the impact of seed characteristics and implantation techniques.
    van Wieringen N; Kotte AN; van Leeuwen GM; Lagendijk JJ; van Dijk JD; Nieuwenhuys GJ
    Phys Med Biol; 1998 Jan; 43(1):121-38. PubMed ID: 9483627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of interseed spacing, tissue perfusion, thermoseed temperatures and catheters in ferromagnetic hyperthermia: results from simulations using finite element models of thermoseeds and catheters.
    Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):975-85. PubMed ID: 7959805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds.
    Brezovich IA; Atkinson WJ; Chakraborty DP
    Med Phys; 1984; 11(2):145-52. PubMed ID: 6727789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperthermia of pet animal tumours with self-regulating ferromagnetic thermoseeds.
    Brezovich IA; Lilly MB; Meredith RF; Weppelmann B; Henderson RA; Brawner W; Salter MM
    Int J Hyperthermia; 1990; 6(1):117-30. PubMed ID: 2299225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of thermal disposition with induction heating used for oncological hyperthermic treatment.
    Dughiero F; Corazza S
    Med Biol Eng Comput; 2005 Jan; 43(1):40-6. PubMed ID: 15742718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new computer method to quickly and accurately compute steady-state temperatures from ferromagnetic seed heating.
    Indik RA; Indik JH
    Med Phys; 1994 Jul; 21(7):1135-44. PubMed ID: 7968846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional simulations of ferromagnetic implant hyperthermia.
    Chen ZP; Roemer RB; Cetas TC
    Med Phys; 1992; 19(4):989-97. PubMed ID: 1518488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-dependent versus constant-rate blood perfusion modelling in ferromagnetic thermoseed hyperthermia: results with a model of the human prostate.
    Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Frye DM; Paliwal BR
    Int J Hyperthermia; 1994; 10(4):517-36. PubMed ID: 7963808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperthermia induction with thermally self-regulated ferromagnetic implants.
    Lilly MB; Brezovich IA; Atkinson WJ
    Radiology; 1985 Jan; 154(1):243-4. PubMed ID: 3964942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment planning for ferromagnetic seed heating.
    Chin RB; Stauffer PR
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):431-9. PubMed ID: 2061119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling tissue heating with ferromagnetic seeds.
    Kotte AN; van Wieringen N; Lagendijk JJ
    Phys Med Biol; 1998 Jan; 43(1):105-20. PubMed ID: 9483626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of generalized cell-survival data in a physiologically based objective function for hyperthermia treatment planning: a sensitivity study with a simple tissue model implanted with an array of ferromagnetic thermoseeds.
    Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR
    Int J Radiat Oncol Biol Phys; 1994 Nov; 30(4):929-43. PubMed ID: 7960996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Errors in the two-dimensional simulation of ferromagnetic implant hyperthermia.
    Chen ZP; Roemer RB; Cetas TC
    Int J Hyperthermia; 1991; 7(5):735-9. PubMed ID: 1940508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia.
    Paulus JA; Richardson JS; Tucker RD; Park JB
    IEEE Trans Biomed Eng; 1996 Apr; 43(4):406-13. PubMed ID: 8626189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferromagnetic hyperthermia and iodine 125 brachytherapy in the treatment of choroidal melanoma in a rabbit model.
    Mieler WF; Jaffe GJ; Steeves RA
    Arch Ophthalmol; 1989 Oct; 107(10):1524-8. PubMed ID: 2803104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.