These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 9223022)
1. The adrenal-renal vascular connection contributes to increase in renal vascular resistance during an experimental hypotension in the rat. Ziecina R; Abramczyk P; Lisiecka A; Przybylski J J Physiol Pharmacol; 1997 Jun; 48(2):179-84. PubMed ID: 9223022 [TBL] [Abstract][Full Text] [Related]
2. Adrenal-renal portal circulation contributes to decrease in renal blood flow after renal artery stenosis in rats. Ziecina R; Abramczyk P; Lisiecka A; Papierski K; Przybylski J J Physiol Pharmacol; 1998 Dec; 49(4):553-60. PubMed ID: 10069696 [TBL] [Abstract][Full Text] [Related]
3. The influence of adrenal vein occlusion on whole-kidney hemodynamics in the spontaneously hypertensive rats. Alsonius K; Ambramczyk P J Physiol Pharmacol; 2000 Jun; 51(2):223-7. PubMed ID: 10898095 [TBL] [Abstract][Full Text] [Related]
4. The adrenal renal vascular connection plays an essential role in the pathogenesis of renovascular hypertension in the rat. Abramczyk P; Ziecina R; Lisiecka A; Papierski K; Przybylski J J Physiol Pharmacol; 2000 Mar; 51(1):35-40. PubMed ID: 10768849 [TBL] [Abstract][Full Text] [Related]
5. Relative contribution of renal nerve and adrenal gland to renal vascular tone during prolonged canine hemorrhagic hypotension. Koyama S; Fujita T; Shibamoto T; Matsuda Y; Hayashi T; Saeki Y; Kawamoto M; Yamaguchi Y Circ Shock; 1993 Apr; 39(4):269-74. PubMed ID: 8485818 [TBL] [Abstract][Full Text] [Related]
6. Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat. Bojakowski K; Abramczyk P; Bojakowska M; Zwolińska A; Przybylski J; Gaciong Z J Physiol Pharmacol; 2001 Mar; 52(1):137-43. PubMed ID: 11321507 [TBL] [Abstract][Full Text] [Related]
7. Occlusion of the adrenal vein leads to an increase in renal vascular resistance in the ipsilateral kidney. Abramczyk P; Ziecina R; Lisiecka A; Przybylski J Clin Exp Pharmacol Physiol; 1998 Jan; 25(1):30-2. PubMed ID: 9493555 [TBL] [Abstract][Full Text] [Related]
8. Autoregulation and regional blood flow of the dog during hemorrhagic shock. Hamaji M; Nakamura M; Izukura M; Nakaba H; Hashimoto T; Tanaka Y; Tumori T; Miyata M; Kawashima Y; Harrison TS Circ Shock; 1986; 19(3):245-55. PubMed ID: 3731400 [TBL] [Abstract][Full Text] [Related]
9. Effects of tezosentan, a dual endothelin receptor antagonist, on the cardiovascular and renal systems of neonatal piglets. Chin A; Radhakrishnan J; Fornell L; John E J Pediatr Surg; 2001 Dec; 36(12):1824-8. PubMed ID: 11733915 [TBL] [Abstract][Full Text] [Related]
10. Effects of ATP on rat renal haemodynamics and excretion: role of sodium intake, nitric oxide and cytochrome P450. Dobrowolski L; Walkowska A; Kompanowska-Jezierska E; Kuczeriszka M; Sadowski J Acta Physiol (Oxf); 2007 Jan; 189(1):77-85. PubMed ID: 17280559 [TBL] [Abstract][Full Text] [Related]
11. Brain and peripheral angiotensin II type 1 receptors mediate renal vasoconstrictor and blood pressure responses to angiotensin IV in the rat. Yang R; Smolders I; De Bundel D; Fouyn R; Halberg M; Demaegdt H; Vanderheyden P; Dupont AG J Hypertens; 2008 May; 26(5):998-1007. PubMed ID: 18398343 [TBL] [Abstract][Full Text] [Related]
12. Chronic type IV phosphodiesterase inhibition protects glomerular filtration rate and renal and mesenteric blood flow in a zymosan-induced model of multiple organ dysfunction syndrome treated with norepinephrine. Thomas NJ; Carcillo JA; Herzer WA; Mi Z; Jackson EK J Pharmacol Exp Ther; 2001 Jan; 296(1):168-74. PubMed ID: 11123377 [TBL] [Abstract][Full Text] [Related]
13. Effects of endothelin receptors ET(A) and ET(B) blockade on renal haemodynamics in normal rats and in rats with experimental congestive heart failure. Abassi Z; Francis B; Wessale J; Ovcharenko E; Winaver J; Hoffman A Clin Sci (Lond); 2002 Aug; 103 Suppl 48():245S-248S. PubMed ID: 12193096 [TBL] [Abstract][Full Text] [Related]
14. Central histamine-induced reversal of critical haemorrhagic hypotension in rats--haemodynamic studies. Jochem J J Physiol Pharmacol; 2002 Mar; 53(1):75-84. PubMed ID: 11939720 [TBL] [Abstract][Full Text] [Related]
15. Endogenous norepinephrine regulates blood flow to the intact rat tibia. Feitelson JB; Kulenovic E; Beck DJ; Harris PD; Passmore JC; Malkani AL; Fleming JT J Orthop Res; 2002 Mar; 20(2):391-6. PubMed ID: 11924647 [TBL] [Abstract][Full Text] [Related]
16. Involvement of central alpha1- and alpha2-adrenoceptors on cardiovascular responses to moxonidine. Moreira TS; Takakura AC; Menani JV; Colombari E Eur J Pharmacol; 2007 Jun; 563(1-3):164-71. PubMed ID: 17382316 [TBL] [Abstract][Full Text] [Related]
17. Involvement of the renin-angiotensin system in endogenous central histamine-induced reversal of critical haemorrhagic hypotension in rats. Jochem J J Physiol Pharmacol; 2004 Mar; 55(1 Pt 1):39-55. PubMed ID: 15082866 [TBL] [Abstract][Full Text] [Related]
18. Nitric oxide, superoxide and renal blood flow autoregulation in SHR after perinatal L-arginine and antioxidants. Koeners MP; Racasan S; Koomans HA; Joles JA; Braam B Acta Physiol (Oxf); 2007 Aug; 190(4):329-38. PubMed ID: 17394565 [TBL] [Abstract][Full Text] [Related]
19. Effects of calcium channel blockade on angiotensin II-induced peritubular ischemia in rats. Kondo N; Kiyomoto H; Yamamoto T; Miyatake A; Sun GP; Rahman M; Hitomi H; Moriwaki K; Hara T; Kimura S; Abe Y; Kohno M; Nishiyama A J Pharmacol Exp Ther; 2006 Mar; 316(3):1047-52. PubMed ID: 16319305 [TBL] [Abstract][Full Text] [Related]
20. Kidney function during decreased perfusion pressure due to aortic clamping and hemorrhagic hypotension: a single nephron study in dog kidney. Heller J; Horácek V Ren Physiol; 1984; 7(2):90-101. PubMed ID: 6709955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]