BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 9223285)

  • 1. Leishmania tarentolae contains distinct cytosolic and mitochondrial glutaminyl-tRNA synthetase activities.
    Nabholz CE; Hauser R; Schneider A
    Proc Natl Acad Sci U S A; 1997 Jul; 94(15):7903-8. PubMed ID: 9223285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widespread use of the glu-tRNAGln transamidation pathway among bacteria. A member of the alpha purple bacteria lacks glutaminyl-trna synthetase.
    Gagnon Y; Lacoste L; Champagne N; Lapointe J
    J Biol Chem; 1996 Jun; 271(25):14856-63. PubMed ID: 8662929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria.
    Liao CC; Lin CH; Chen SJ; Wang CC
    Nucleic Acids Res; 2012 Oct; 40(18):9171-81. PubMed ID: 22821561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
    Jahn M; Rogers MJ; Söll D
    Nature; 1991 Jul; 352(6332):258-60. PubMed ID: 1857423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition of tRNAGln by Helicobacter pylori GluRS2--a tRNAGln-specific glutamyl-tRNA synthetase.
    Chang KM; Hendrickson TL
    Nucleic Acids Res; 2009 Nov; 37(20):6942-9. PubMed ID: 19755501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergence of glutamate and glutamine aminoacylation pathways: providing the evolutionary rationale for mischarging.
    Rogers KC; Söll D
    J Mol Evol; 1995 May; 40(5):476-81. PubMed ID: 7783222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase.
    Sherman JM; Thomann HU; Söll D
    J Mol Biol; 1996 Mar; 256(5):818-28. PubMed ID: 8601833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogenesis of glutaminyl-mt tRNAGln in human mitochondria.
    Nagao A; Suzuki T; Katoh T; Sakaguchi Y; Suzuki T
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16209-14. PubMed ID: 19805282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution.
    Rould MA; Perona JJ; Söll D; Steitz TA
    Science; 1989 Dec; 246(4934):1135-42. PubMed ID: 2479982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-canonical eukaryotic glutaminyl- and glutamyl-tRNA synthetases form mitochondrial aminoacyl-tRNA in Trypanosoma brucei.
    Rinehart J; Horn EK; Wei D; Soll D; Schneider A
    J Biol Chem; 2004 Jan; 279(2):1161-6. PubMed ID: 14563839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
    Rogers MJ; Weygand-Durasević I; Schwob E; Sherman JM; Rogers KC; Adachi T; Inokuchi H; Söll D
    Biochimie; 1993; 75(12):1083-90. PubMed ID: 8199243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of anticodon loop recognition by glutaminyl-tRNA synthetase.
    Rould MA; Perona JJ; Steitz TA
    Nature; 1991 Jul; 352(6332):213-8. PubMed ID: 1857417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of tRNA(Gln) acceptor identity with phosphate-sugar backbone interactions observed in the crystal structure of the Escherichia coli glutaminyl-tRNA synthetase-tRNA(Gln) complex.
    McClain WH; Schneider J; Gabriel K
    Biochimie; 1993; 75(12):1125-36. PubMed ID: 8199248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination among tRNAs intermediate in glutamate and glutamine acceptor identity.
    Rogers KC; Söll D
    Biochemistry; 1993 Dec; 32(51):14210-9. PubMed ID: 7505112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identity switches between tRNAs aminoacylated by class I glutaminyl- and class II aspartyl-tRNA synthetases.
    Frugier M; Söll D; Giegé R; Florentz C
    Biochemistry; 1994 Aug; 33(33):9912-21. PubMed ID: 8060999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saccharomyces cerevisiae imports the cytosolic pathway for Gln-tRNA synthesis into the mitochondrion.
    Rinehart J; Krett B; Rubio MA; Alfonzo JD; Söll D
    Genes Dev; 2005 Mar; 19(5):583-92. PubMed ID: 15706032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coevolution of an aminoacyl-tRNA synthetase with its tRNA substrates.
    Salazar JC; Ahel I; Orellana O; Tumbula-Hansen D; Krieger R; Daniels L; Söll D
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13863-8. PubMed ID: 14615592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
    Weygand-Durasević I; Rogers MJ; Söll D
    J Mol Biol; 1994 Jul; 240(2):111-8. PubMed ID: 8027995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ
    J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acceptor stem and anticodon RNA hairpin helix interactions with glutamine tRNA synthetase.
    Wright DJ; Martinis SA; Jahn M; Söll D; Schimmel P
    Biochimie; 1993; 75(12):1041-9. PubMed ID: 8199240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.