These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 9224305)

  • 1. Simultaneous chromosome 7 and 17 gain and sex chromosome loss provide evidence that renal metanephric adenoma is related to papillary renal cell carcinoma.
    Brown JA; Anderl KL; Borell TJ; Qian J; Bostwick DG; Jenkins RB
    J Urol; 1997 Aug; 158(2):370-4. PubMed ID: 9224305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metaphase analysis of metanephric adenoma reveals chromosome Y loss with chromosome 7 and 17 gain.
    Brown JA; Sebo TJ; Segura JW
    Urology; 1996 Sep; 48(3):473-5. PubMed ID: 8804507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence in situ hybridization analysis of renal oncocytoma reveals frequent loss of chromosomes Y and 1.
    Brown JA; Takahashi S; Alcaraz A; Borell TJ; Anderl KL; Qian J; Persons DL; Bostwick DG; Lieber MM; Jenkins RB
    J Urol; 1996 Jul; 156(1):31-5. PubMed ID: 8648831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinicopathologic and interphase cytogenetic analysis of papillary (chromophilic) renal cell carcinoma.
    Kattar MM; Grignon DJ; Wallis T; Haas GP; Sakr WA; Pontes JE; Visscher DW
    Mod Pathol; 1997 Nov; 10(11):1143-50. PubMed ID: 9388066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical chromosomal aberrations in papillary renal cortical tumors: relationship with histopathologic features.
    Henke RP; Erbersdobler A
    Virchows Arch; 2002 Jun; 440(6):604-9. PubMed ID: 12070600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiating genetic events in small renal neoplasms detected by comparative genomic hybridization.
    Presti JC; Moch H; Gelb AB; Huynh D; Waldman FM
    J Urol; 1998 Oct; 160(4):1557-61. PubMed ID: 9751412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal cell carcinoma of end-stage renal disease: an analysis of chromosome 3, 7, and 17 abnormalities by microsatellite amplification.
    Hughson MD; Bigler S; Dickman K; Kovacs G
    Mod Pathol; 1999 Mar; 12(3):301-9. PubMed ID: 10102616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent microsatellite analysis reveals duplication of specific chromosomal regions in papillary renal cell tumors.
    Palmedo G; Fischer J; Kovacs G
    Lab Invest; 1997 Dec; 77(6):633-8. PubMed ID: 9426401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bladder irrigation specimens assayed by fluorescence in situ hybridization to interphase nuclei.
    Wheeless LL; Reeder JE; Han R; O'Connell MJ; Frank IN; Cockett AT; Hopman AH
    Cytometry; 1994 Dec; 17(4):319-26. PubMed ID: 7875039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interphase cytogenetics of multicentric renal cell tumours confirm associations of specific aberrations with defined cytomorphologies.
    Amo-Takyi BK; Mittermayer C; Günther K; Handt S
    Br J Cancer; 2000 Apr; 82(8):1407-14. PubMed ID: 10780519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonpapillary and papillary renal cell carcinoma: a cytogenetic and phenotypic study.
    Hughson MD; Johnson LD; Silva FG; Kovacs G
    Mod Pathol; 1993 Jul; 6(4):449-56. PubMed ID: 8415591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromosomal abnormalities in renal cell neoplasms associated with acquired renal cystic disease. A series studied by comparative genomic hybridization and fluorescence in situ hybridization.
    Gronwald J; Baur AS; Holtgreve-Grez H; Jauch A; Mosimann F; Jichlinski P; Wauters JP; Cremer T; Guillou L
    J Pathol; 1999 Feb; 187(3):308-12. PubMed ID: 10398084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ hybridization and flow cytometric analysis of colorectal tumours suggests two routes of tumourigenesis characterized by gain of chromosome 7 or loss of chromosomes 17 and 18.
    Herbergs J; Hopman AH; De Bruïne AP; Ramaekers FC; Arends JW
    J Pathol; 1996 Jul; 179(3):243-7. PubMed ID: 8774477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Prognosis of renal cell carcinoma and detection of numerical chromosome aberration].
    Uchida K; Akaza H; Nemoto R; Nakamura Y
    Gan To Kagaku Ryoho; 1997 Jul; 24 Suppl 2():313-9. PubMed ID: 9263522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Genetic aspects of renal tumors in adults].
    Fournet JC; Béroud C; Austruy E; Léonard C
    Arch Anat Cytol Pathol; 1992; 40(5-6):301-6. PubMed ID: 1304117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosomal aberrations in hepatocellular carcinomas: relationship with pathological features.
    Zimmermann U; Feneux D; Mathey G; Gayral F; Franco D; Bedossa P
    Hepatology; 1997 Dec; 26(6):1492-8. PubMed ID: 9397989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of deletions in the short arm of chromosome 3 in uncultured renal cell carcinomas by interphase cytogenetics.
    Siebert R; Jacobi C; Matthiesen P; Zühlke-Jenisch R; Potratz C; Zhang Y; Stöckle M; Klöppel G; Grote W; Schlegelberger B
    J Urol; 1998 Aug; 160(2):534-9. PubMed ID: 9679924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Genetics of renal tumors].
    Oláh E; Jakab Z; Balogh E
    Orv Hetil; 2001 Jul; 142(26):1367-73. PubMed ID: 11478032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical aberrations of chromosomes 1 and 7 in renal cell carcinomas as detected by interphase cytogenetics.
    Beck JL; Hopman AH; Feitz WF; Schalken J; Schaafsma HE; Van de Kaa CA; Ramaekers FC; Hanselaar AG; De Wilde PC
    J Pathol; 1995 Jun; 176(2):123-35. PubMed ID: 7636622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of chromosome aneuploidy in breast carcinoma progression by using fluorescence in situ hybridization.
    Mendelin J; Grayson M; Wallis T; Visscher DW
    Lab Invest; 1999 Apr; 79(4):387-93. PubMed ID: 10211991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.