These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 9224686)

  • 1. A single mutation in the M-subunit of Rhodospirillum rubrum confers herbicide resistance.
    Sopp G; Rutherford WA; Oettmeier W
    FEBS Lett; 1997 Jun; 409(3):343-6. PubMed ID: 9224686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of four herbicide-resistant mutants of Rhodopseudomonas viridis by genetic analysis, electron paramagnetic resonance, and optical spectroscopy.
    Sinning I; Michel H; Mathis P; Rutherford AW
    Biochemistry; 1989 Jun; 28(13):5544-53. PubMed ID: 2550055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of two spontaneous antimycin A resistant mutants of Rhodospirillum rubrum.
    Uhrig JF; Jakobs CU; Majewski C; Trebst A
    Biochim Biophys Acta; 1994 Sep; 1187(3):347-53. PubMed ID: 7918532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reaction center H subunit is not required for high levels of light-harvesting complex 1 in Rhodospirillum rubrum mutants.
    Lupo D; Ghosh R
    J Bacteriol; 2004 Sep; 186(17):5585-95. PubMed ID: 15317762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of antimycin resistant mutants of Rhodospirillum rubrum.
    Uhrig J; Jakobs C; Majewski C; Trebst A
    Biochem Soc Trans; 1994 Feb; 22(1):59S. PubMed ID: 7911439
    [No Abstract]   [Full Text] [Related]  

  • 6. Herbicide-quinone competition in the acceptor complex of photosynthetic reaction centers from Rhodopseudomonas sphaeroides: a bacterial model for PS-II-herbicide activity in plants.
    Stein RR; Castellvi AL; Bogacz JP; Wraight CA
    J Cell Biochem; 1984; 24(3):243-59. PubMed ID: 6376526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium and kinetic parameters for the binding of inhibitors to the QB pocket in bacterial chromatophores: dependence on the state of QA.
    Ginet N; Lavergne J
    Biochemistry; 2001 Feb; 40(6):1812-23. PubMed ID: 11327844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Rhodospirillum rubrum cytochrome bc1 complex: redox properties, inhibitor sensitivity and proton pumping.
    Güner S; Robertson DE; Yu L; Qiu ZH; Yu CA; Knaff DB
    Biochim Biophys Acta; 1991 Jun; 1058(2):269-79. PubMed ID: 1646633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal B1 in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas spheroides and Rhodospirillum rubrum.
    Hsi ES; Bolton JR
    Biochim Biophys Acta; 1974 Apr; 347(1):126-33. PubMed ID: 4373063
    [No Abstract]   [Full Text] [Related]  

  • 10. Characterization of triclosan-resistant mutants reveals multiple antimicrobial resistance mechanisms in Rhodospirillum rubrum S1H.
    Pycke BF; Crabbé A; Verstraete W; Leys N
    Appl Environ Microbiol; 2010 May; 76(10):3116-23. PubMed ID: 20305019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microaerophilic cooperation of reductive and oxidative pathways allows maximal photosynthetic membrane biosynthesis in Rhodospirillum rubrum.
    Grammel H; Gilles ED; Ghosh R
    Appl Environ Microbiol; 2003 Nov; 69(11):6577-86. PubMed ID: 14602616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmidless, photosynthetically incompetent mutants of Rhodospirillum rubrum.
    Kuhl SA; Wimer LT; Yoch DC
    J Bacteriol; 1984 Sep; 159(3):913-8. PubMed ID: 6434514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EPR studies of a nonphotosynthetic mutant of Rhodospirillum rubrum.
    Valle-Tascón SD; Malkin R
    Arch Biochem Biophys; 1981 Aug; 210(1):340-7. PubMed ID: 6271071
    [No Abstract]   [Full Text] [Related]  

  • 14. Herbicide binding in the bacterial photosynthetic reaction center.
    Sinning I
    Trends Biochem Sci; 1992 Apr; 17(4):150-4. PubMed ID: 1585459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of reaction centers from photosynthetic purple bacteria: electron paramagnetic resonance and electron nuclear double resonance spectroscopy.
    Rautter J; Lendzian F; Lubitz W; Wang S; Allen JP
    Biochemistry; 1994 Oct; 33(40):12077-84. PubMed ID: 7918428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermostability of Rhodopseudomonas viridis and Rhodospirillum rubrum chromatophores reflecting physiological conditions.
    Odahara T; Ishii N; Ooishi A; Honda S; Uedaira H; Hara M; Miyake J
    Biochim Biophys Acta; 2011 Jun; 1808(6):1645-53. PubMed ID: 21354412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dinitrogenase reductase-activating glycohydrolase can be released from chromatophores of Rhodospirillum rubrum by treatment with MgGDP.
    Norén A; Nordlund S
    J Bacteriol; 1997 Dec; 179(24):7872-4. PubMed ID: 9401050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel short-lived emission from the photosynthetic bacterium Rhodospirillum rubrum.
    Silberstein BR; Malkin S; Haas E
    FEBS Lett; 1976 Apr; 63(2):299-303. PubMed ID: 816674
    [No Abstract]   [Full Text] [Related]  

  • 19. Photooxidase system of Rhodospirillum rubrum. I. Photooxidations catalyzed by chromatophores isolated from a mutant deficient in photooxidase activity.
    Del Valle-Tascon S; Gimenez-Gallego G; Ramirez JM
    Biochim Biophys Acta; 1977 Jan; 459(1):76-87. PubMed ID: 64259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photoreaction center of Rhodospirillum rubrum mutant strain F24.1.
    Picorel R; Del Campo FF; Ramirez JM; Gingras G
    Biochim Biophys Acta; 1980 Nov; 593(1):76-84. PubMed ID: 6775699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.