These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
394 related articles for article (PubMed ID: 9224718)
1. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae. Zhan XL; Deschenes RJ; Guan KL Genes Dev; 1997 Jul; 11(13):1690-702. PubMed ID: 9224718 [TBL] [Abstract][Full Text] [Related]
2. Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mattison CP; Spencer SS; Kresge KA; Lee J; Ota IM Mol Cell Biol; 1999 Nov; 19(11):7651-60. PubMed ID: 10523653 [TBL] [Abstract][Full Text] [Related]
3. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Wurgler-Murphy SM; Maeda T; Witten EA; Saito H Mol Cell Biol; 1997 Mar; 17(3):1289-97. PubMed ID: 9032256 [TBL] [Abstract][Full Text] [Related]
4. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Zhan XL; Guan KL Genes Dev; 1999 Nov; 13(21):2811-27. PubMed ID: 10557209 [TBL] [Abstract][Full Text] [Related]
5. Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. Jacoby T; Flanagan H; Faykin A; Seto AG; Mattison C; Ota I J Biol Chem; 1997 Jul; 272(28):17749-55. PubMed ID: 9211927 [TBL] [Abstract][Full Text] [Related]
6. Loss of sustained Fus3p kinase activity and the G1 arrest response in cells expressing an inappropriate pheromone receptor. Couve A; Hirsch JP Mol Cell Biol; 1996 Aug; 16(8):4478-85. PubMed ID: 8754848 [TBL] [Abstract][Full Text] [Related]
7. Relative dependence of different outputs of the Saccharomyces cerevisiae pheromone response pathway on the MAP kinase Fus3p. Farley FW; Satterberg B; Goldsmith EJ; Elion EA Genetics; 1999 Apr; 151(4):1425-44. PubMed ID: 10101167 [TBL] [Abstract][Full Text] [Related]
8. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Mattison CP; Ota IM Genes Dev; 2000 May; 14(10):1229-35. PubMed ID: 10817757 [TBL] [Abstract][Full Text] [Related]
9. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. Hahn JS; Thiele DJ J Biol Chem; 2002 Jun; 277(24):21278-84. PubMed ID: 11923319 [TBL] [Abstract][Full Text] [Related]
10. Essential functions of protein tyrosine phosphatases PTP2 and PTP3 and RIM11 tyrosine phosphorylation in Saccharomyces cerevisiae meiosis and sporulation. Zhan XL; Hong Y; Zhu T; Mitchell AP; Deschenes RJ; Guan KL Mol Biol Cell; 2000 Feb; 11(2):663-76. PubMed ID: 10679022 [TBL] [Abstract][Full Text] [Related]
11. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. Doi K; Gartner A; Ammerer G; Errede B; Shinkawa H; Sugimoto K; Matsumoto K EMBO J; 1994 Jan; 13(1):61-70. PubMed ID: 8306972 [TBL] [Abstract][Full Text] [Related]
12. Fus3p and Kss1p control G1 arrest in Saccharomyces cerevisiae through a balance of distinct arrest and proliferative functions that operate in parallel with Far1p. Cherkasova V; Lyons DM; Elion EA Genetics; 1999 Mar; 151(3):989-1004. PubMed ID: 10049917 [TBL] [Abstract][Full Text] [Related]
13. Phosphorylation and localization of Kss1, a MAP kinase of the Saccharomyces cerevisiae pheromone response pathway. Ma D; Cook JG; Thorner J Mol Biol Cell; 1995 Jul; 6(7):889-909. PubMed ID: 7579701 [TBL] [Abstract][Full Text] [Related]
14. The osmoregulatory pathway represses mating pathway activity in Saccharomyces cerevisiae: isolation of a FUS3 mutant that is insensitive to the repression mechanism. Hall JP; Cherkasova V; Elion E; Gustin MC; Winter E Mol Cell Biol; 1996 Dec; 16(12):6715-23. PubMed ID: 8943326 [TBL] [Abstract][Full Text] [Related]
15. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Rep M; Albertyn J; Thevelein JM; Prior BA; Hohmann S Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():715-727. PubMed ID: 10217506 [TBL] [Abstract][Full Text] [Related]
16. The MAP kinase Fus3 associates with and phosphorylates the upstream signaling component Ste5. Kranz JE; Satterberg B; Elion EA Genes Dev; 1994 Feb; 8(3):313-27. PubMed ID: 8314085 [TBL] [Abstract][Full Text] [Related]
17. Yeast homolog of mammalian mitogen-activated protein kinase, FUS3/DAC2 kinase, is required both for cell fusion and for G1 arrest of the cell cycle and morphological changes by the cdc37 mutation. Fujimura HA J Cell Sci; 1994 Sep; 107 ( Pt 9)():2617-22. PubMed ID: 7844175 [TBL] [Abstract][Full Text] [Related]
18. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Gartner A; Nasmyth K; Ammerer G Genes Dev; 1992 Jul; 6(7):1280-92. PubMed ID: 1628831 [TBL] [Abstract][Full Text] [Related]
19. Hsl7p, a negative regulator of Ste20p protein kinase in the Saccharomyces cerevisiae filamentous growth-signaling pathway. Fujita A; Tonouchi A; Hiroko T; Inose F; Nagashima T; Satoh R; Tanaka S Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8522-7. PubMed ID: 10411908 [TBL] [Abstract][Full Text] [Related]
20. The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. Zarzov P; Mazzoni C; Mann C EMBO J; 1996 Jan; 15(1):83-91. PubMed ID: 8598209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]