These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 9224718)

  • 41. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1.
    Elion EA; Satterberg B; Kranz JE
    Mol Biol Cell; 1993 May; 4(5):495-510. PubMed ID: 8334305
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MAP kinase dynamics in response to pheromones in budding yeast.
    van Drogen F; Stucke VM; Jorritsma G; Peter M
    Nat Cell Biol; 2001 Dec; 3(12):1051-9. PubMed ID: 11781566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphorylation of the pheromone-responsive Gbeta protein of Saccharomyces cerevisiae does not affect its mating-specific signaling function.
    Li E; Cismowski MJ; Stone DE
    Mol Gen Genet; 1998 Jun; 258(6):608-18. PubMed ID: 9671029
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein.
    Sette C; Inouye CJ; Stroschein SL; Iaquinta PJ; Thorner J
    Mol Biol Cell; 2000 Nov; 11(11):4033-49. PubMed ID: 11071925
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinct docking mechanisms mediate interactions between the Msg5 phosphatase and mating or cell integrity mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae.
    Palacios L; Dickinson RJ; Sacristán-Reviriego A; Didmon MP; Marín MJ; Martín H; Keyse SM; Molina M
    J Biol Chem; 2011 Dec; 286(49):42037-42050. PubMed ID: 22006927
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cpp1 phosphatase mediated signaling crosstalk between Hog1 and Cek1 mitogen-activated protein kinases is involved in the phenotypic transition in Candida albicans.
    Deng FS; Lin CH
    Med Mycol; 2018 Feb; 56(2):242-252. PubMed ID: 28431022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development.
    Tang TL; Freeman RM; O'Reilly AM; Neel BG; Sokol SY
    Cell; 1995 Feb; 80(3):473-83. PubMed ID: 7859288
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and characterization of a novel dual specific phosphatase, HVH2, which selectively dephosphorylates the mitogen-activated protein kinase.
    Guan KL; Butch E
    J Biol Chem; 1995 Mar; 270(13):7197-203. PubMed ID: 7535768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The S. cerevisiae nitrogen starvation-induced Yvh1p and Ptp2p phosphatases play a role in control of sporulation.
    Park HD; Beeser AE; Clancy MJ; Cooper TG
    Yeast; 1996 Sep; 12(11):1135-51. PubMed ID: 8896280
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p.
    Matheos D; Metodiev M; Muller E; Stone D; Rose MD
    J Cell Biol; 2004 Apr; 165(1):99-109. PubMed ID: 15067022
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans.
    Csank C; Makris C; Meloche S; Schröppel K; Röllinghoff M; Dignard D; Thomas DY; Whiteway M
    Mol Biol Cell; 1997 Dec; 8(12):2539-51. PubMed ID: 9398674
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of a novel Ser/Thr protein phosphatase Ppq1 as a negative regulator of mating MAP kinase pathway in Saccharomyces cerevisiae.
    Shim E; Park SH
    Biochem Biophys Res Commun; 2014 Jan; 443(1):252-8. PubMed ID: 24309106
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo.
    Sun H; Charles CH; Lau LF; Tonks NK
    Cell; 1993 Nov; 75(3):487-93. PubMed ID: 8221888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple roles of the novel protein tyrosine phosphatase PTP3 during Dictyostelium growth and development.
    Gamper M; Howard PK; Hunter T; Firtel RA
    Mol Cell Biol; 1996 May; 16(5):2431-44. PubMed ID: 8628311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro.
    Errede B; Gartner A; Zhou Z; Nasmyth K; Ammerer G
    Nature; 1993 Mar; 362(6417):261-4. PubMed ID: 8384702
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Feedback phosphorylation of the yeast a-factor receptor requires activation of the downstream signaling pathway from G protein through mitogen-activated protein kinase.
    Feng Y; Davis NG
    Mol Cell Biol; 2000 Jan; 20(2):563-74. PubMed ID: 10611235
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling.
    Yamauchi K; Milarski KL; Saltiel AR; Pessin JE
    Proc Natl Acad Sci U S A; 1995 Jan; 92(3):664-8. PubMed ID: 7531337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The SH3-domain protein Bem1 coordinates mitogen-activated protein kinase cascade activation with cell cycle control in Saccharomyces cerevisiae.
    Lyons DM; Mahanty SK; Choi KY; Manandhar M; Elion EA
    Mol Cell Biol; 1996 Aug; 16(8):4095-106. PubMed ID: 8754808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation.
    Madhani HD; Styles CA; Fink GR
    Cell; 1997 Nov; 91(5):673-84. PubMed ID: 9393860
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MAP kinase signaling induces nuclear reorganization in budding yeast.
    Stone EM; Heun P; Laroche T; Pillus L; Gasser SM
    Curr Biol; 2000 Apr; 10(7):373-82. PubMed ID: 10753745
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.