BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9224937)

  • 1. Ribonuclease T1 is active when both catalytic histidines are replaced by aspartate.
    Landt O; Thölke J; Grunert HP; Saenger W; Hahn U
    Biol Chem; 1997 Jun; 378(6):553-8. PubMed ID: 9224937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interactions among the His40, Glu58 and His92 catalysts of ribonuclease T1 as studied by double and triple mutants.
    Steyaert J; Wyns L
    J Mol Biol; 1993 Feb; 229(3):770-81. PubMed ID: 8433370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on RNase T1 mutants affecting enzyme catalysis.
    Grunert HP; Zouni A; Beineke M; Quaas R; Georgalis Y; Saenger W; Hahn U
    Eur J Biochem; 1991 Apr; 197(1):203-7. PubMed ID: 1901790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histidine-40 of ribonuclease T1 acts as base catalyst when the true catalytic base, glutamic acid-58, is replaced by alanine.
    Steyaert J; Hallenga K; Wyns L; Stanssens P
    Biochemistry; 1990 Sep; 29(38):9064-72. PubMed ID: 1980211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Structures and functions of ribonucleases].
    Irie M
    Yakugaku Zasshi; 1997 Sep; 117(9):561-82. PubMed ID: 9357326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes.
    Quirk DJ; Park C; Thompson JE; Raines RT
    Biochemistry; 1998 Dec; 37(51):17958-64. PubMed ID: 9922164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. His92Ala mutation in ribonuclease T1 induces segmental flexibility. An X-ray study.
    Koellner G; Choe HW; Heinemann U; Grunert HP; Zouni A; Hahn U; Saenger W
    J Mol Biol; 1992 Apr; 224(3):701-13. PubMed ID: 1314902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of histidine-40 in ribonuclease T1 catalysis: three-dimensionalstructures of the partially active His40Lys mutant.
    Zegers I; Verhelst P; Choe HW; Steyaert J; Heinemann U; Saenger W; Wyns L
    Biochemistry; 1992 Nov; 31(46):11317-25. PubMed ID: 1445870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trp59 to Tyr substitution enhances the catalytic activity of RNase T1 and of the Tyr to Trp variants in positions 24, 42 and 45.
    Grunert HP; Landt O; Zirpel-Giesebrecht M; Backmann J; Heinemann U; Saenger W; Hahn U
    Protein Eng; 1993 Sep; 6(7):739-44. PubMed ID: 8248097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. His...Asp catalytic dyad of ribonuclease A: structure and function of the wild-type, D121N, and D121A enzymes.
    Schultz LW; Quirk DJ; Raines RT
    Biochemistry; 1998 Jun; 37(25):8886-98. PubMed ID: 9636030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing functional perfection in substructures of ribonuclease T1: double combinatorial random mutagenesis involving Asn43, Asn44, and Glu46 in the guanine binding loop.
    Kumar K; Walz FG
    Biochemistry; 2001 Mar; 40(12):3748-57. PubMed ID: 11297444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional structure of ribonuclease T1 complexed with an isosteric phosphonate substrate analogue of GpU: alternate substrate binding modes and catalysis.
    Arni RK; Watanabe L; Ward RJ; Kreitman RJ; Kumar K; Walz FG
    Biochemistry; 1999 Feb; 38(8):2452-61. PubMed ID: 10029539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the histidine and aspartic acid residues essential for enzymatic activity of a family I.3 lipase by site-directed mutagenesis.
    Kwon HJ; Amada K; Haruki M; Morikawa M; Kanaya S
    FEBS Lett; 2000 Oct; 483(2-3):139-42. PubMed ID: 11042269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A catalytic function for the structurally conserved residue Phe 100 of ribonuclease T1.
    Doumen J; Gonciarz M; Zegers I; Loris R; Wyns L; Steyaert J
    Protein Sci; 1996 Aug; 5(8):1523-30. PubMed ID: 8844843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of RNase T1: concerted triester-like phosphoryl transfer via a catalytic three-centered hydrogen bond.
    Loverix S; Winqvist A; Strömberg R; Steyaert J
    Chem Biol; 2000 Aug; 7(8):651-8. PubMed ID: 11048955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of Glu 58, an amino acid of the active center of ribonuclease T1, to Gln and Asp.
    Nishikawa S; Morioka H; Fuchimura K; Tanaka T; Uesugi S; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1986 Jul; 138(2):789-94. PubMed ID: 2874806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of ribonuclease T1 complexed with adenosine 2'-monophosphate at 1.8-A resolution.
    Ding J; Koellner G; Grunert HP; Saenger W
    J Biol Chem; 1991 Aug; 266(23):15128-34. PubMed ID: 1651320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extended kinetic analysis of ribonuclease T1 variants leads to an improved scheme for the reaction mechanism.
    Backmann J; Doray CC; Grunert HP; Landt O; Hahn U
    Biochem Biophys Res Commun; 1994 Feb; 199(1):213-9. PubMed ID: 8123015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of RNase T1 with 3'-guanylic acid and guanosine.
    Zegers I; Haikal AF; Palmer R; Wyns L
    J Biol Chem; 1994 Jan; 269(1):127-33. PubMed ID: 8276784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Addressing the challenge of changing the specificity of RNase T1 with rational and evolutionary approaches.
    Struhalla M; Czaja R; Hahn U
    Chembiochem; 2004 Feb; 5(2):200-5. PubMed ID: 14760741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.