These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 9224939)
21. Capping, splicing, and 3' processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Fong N; Bentley DL Genes Dev; 2001 Jul; 15(14):1783-95. PubMed ID: 11459828 [TBL] [Abstract][Full Text] [Related]
22. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Vasiljeva L; Kim M; Mutschler H; Buratowski S; Meinhart A Nat Struct Mol Biol; 2008 Aug; 15(8):795-804. PubMed ID: 18660819 [TBL] [Abstract][Full Text] [Related]
23. The RNA polymerase II C-terminal domain-interacting domain of yeast Nrd1 contributes to the choice of termination pathway and couples to RNA processing by the nuclear exosome. Heo DH; Yoo I; Kong J; Lidschreiber M; Mayer A; Choi BY; Hahn Y; Cramer P; Buratowski S; Kim M J Biol Chem; 2013 Dec; 288(51):36676-90. PubMed ID: 24196955 [TBL] [Abstract][Full Text] [Related]
24. Two novel arginine/serine (SR) proteins in maize are differentially spliced and utilize non-canonical splice sites. Gupta S; Wang BB; Stryker GA; Zanetti ME; Lal SK Biochim Biophys Acta; 2005 May; 1728(3):105-14. PubMed ID: 15780972 [TBL] [Abstract][Full Text] [Related]
25. RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. Kelly WG; Dahmus ME; Hart GW J Biol Chem; 1993 May; 268(14):10416-24. PubMed ID: 8486697 [TBL] [Abstract][Full Text] [Related]
26. Carboxy terminal domain of the largest subunit of RNA polymerase II of Leishmania donovani has an unusually low number of phosphorylation sites. Dasgupta A; Sharma S; Das A; Sarkar D; Majumder H Med Sci Monit; 2002 May; 8(5):CR341-50. PubMed ID: 12011776 [TBL] [Abstract][Full Text] [Related]
27. Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat. Liu J; Fan S; Lee CJ; Greenleaf AL; Zhou P J Biol Chem; 2013 Apr; 288(15):10890-901. PubMed ID: 23436654 [TBL] [Abstract][Full Text] [Related]
28. Role of SR protein modular domains in alternative splicing specificity in vivo. van Der Houven Van Oordt W; Newton K; Screaton GR; Cáceres JF Nucleic Acids Res; 2000 Dec; 28(24):4822-31. PubMed ID: 11121472 [TBL] [Abstract][Full Text] [Related]
29. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3' end processing. Hsin JP; Sheth A; Manley JL Science; 2011 Nov; 334(6056):683-6. PubMed ID: 22053051 [TBL] [Abstract][Full Text] [Related]
30. Cotranscriptional association of mRNA export factor Yra1 with C-terminal domain of RNA polymerase II. MacKellar AL; Greenleaf AL J Biol Chem; 2011 Oct; 286(42):36385-95. PubMed ID: 21856751 [TBL] [Abstract][Full Text] [Related]
31. C-terminal domain (CTD) of RNA-polymerase II and N-terminal segment of the human TATA binding protein (TBP) can mediate remote and proximal transcriptional activation, respectively. Seipel K; Georgiev O; Gerber HP; Schaffner W Nucleic Acids Res; 1993 Dec; 21(24):5609-15. PubMed ID: 8284205 [TBL] [Abstract][Full Text] [Related]
32. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing. Day IS; Golovkin M; Palusa SG; Link A; Ali GS; Thomas J; Richardson DN; Reddy AS Plant J; 2012 Sep; 71(6):936-47. PubMed ID: 22563826 [TBL] [Abstract][Full Text] [Related]
33. Heptad-Specific Phosphorylation of RNA Polymerase II CTD. Schüller R; Forné I; Straub T; Schreieck A; Texier Y; Shah N; Decker TM; Cramer P; Imhof A; Eick D Mol Cell; 2016 Jan; 61(2):305-14. PubMed ID: 26799765 [TBL] [Abstract][Full Text] [Related]
34. Different strategies for carboxyl-terminal domain (CTD) recognition by serine 5-specific CTD phosphatases. Hausmann S; Koiwa H; Krishnamurthy S; Hampsey M; Shuman S J Biol Chem; 2005 Nov; 280(45):37681-8. PubMed ID: 16148005 [TBL] [Abstract][Full Text] [Related]
35. Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II. Chang A; Cheang S; Espanel X; Sudol M J Biol Chem; 2000 Jul; 275(27):20562-71. PubMed ID: 10781604 [TBL] [Abstract][Full Text] [Related]
36. Cloning and characterization of a novel RNA polymerase II C-terminal domain phosphatase. Zheng H; Ji C; Gu S; Shi B; Wang J; Xie Y; Mao Y Biochem Biophys Res Commun; 2005 Jun; 331(4):1401-7. PubMed ID: 15883030 [TBL] [Abstract][Full Text] [Related]
37. Studies of nematode TFIIE function reveal a link between Ser-5 phosphorylation of RNA polymerase II and the transition from transcription initiation to elongation. Yamamoto S; Watanabe Y; van der Spek PJ; Watanabe T; Fujimoto H; Hanaoka F; Ohkuma Y Mol Cell Biol; 2001 Jan; 21(1):1-15. PubMed ID: 11113176 [TBL] [Abstract][Full Text] [Related]
38. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Xiang K; Nagaike T; Xiang S; Kilic T; Beh MM; Manley JL; Tong L Nature; 2010 Oct; 467(7316):729-33. PubMed ID: 20861839 [TBL] [Abstract][Full Text] [Related]
39. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. Morris DP; Greenleaf AL J Biol Chem; 2000 Dec; 275(51):39935-43. PubMed ID: 10978320 [TBL] [Abstract][Full Text] [Related]
40. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Lee JM; Greenleaf AL Proc Natl Acad Sci U S A; 1989 May; 86(10):3624-8. PubMed ID: 2657724 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]