These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 9226112)
1. Natural protection of spring and well drinking water against surface microbial contamination. I. Hydrogeological parameters. Robertson JB; Edberg SC Crit Rev Microbiol; 1997; 23(2):143-78. PubMed ID: 9226112 [TBL] [Abstract][Full Text] [Related]
2. Filtration and transport of Bacillus subtilis spores and the F-RNA phage MS2 in a coarse alluvial gravel aquifer: implications in the estimation of setback distances. Pang L; Close M; Goltz M; Noonan M; Sinton L J Contam Hydrol; 2005 Apr; 77(3):165-94. PubMed ID: 15763354 [TBL] [Abstract][Full Text] [Related]
3. Estimation of septic tank setback distances based on transport of E. coli and F-RNA phages. Pang L; Close M; Goltz M; Sinton L; Davies H; Hall C; Stanton G Environ Int; 2004 Jan; 29(7):907-21. PubMed ID: 14592568 [TBL] [Abstract][Full Text] [Related]
4. Transport of Escherichia coli and solutes during waste water infiltration in an urban alluvial aquifer. Foppen JW; van Herwerden M; Kebtie M; Noman A; Schijven JF; Stuyfzand PJ; Uhlenbrook S J Contam Hydrol; 2008 Jan; 95(1-2):1-16. PubMed ID: 17854950 [TBL] [Abstract][Full Text] [Related]
5. Natural protection of spring and well drinking water against surface microbial contamination. II. Indicators and monitoring parameters for parasites. Edberg SC; LeClerc H; Robertson J Crit Rev Microbiol; 1997; 23(2):179-206. PubMed ID: 9226113 [TBL] [Abstract][Full Text] [Related]
6. Groundwater: the processes and global significance of aquifer degradation. Foster SS; Chilton PJ Philos Trans R Soc Lond B Biol Sci; 2003 Dec; 358(1440):1957-72. PubMed ID: 14728791 [TBL] [Abstract][Full Text] [Related]
7. Hydrogeochemistry of alluvial groundwaters in an agricultural area: an implication for groundwater contamination susceptibility. Chae GT; Kim K; Yun ST; Kim KH; Kim SO; Choi BY; Kim HS; Rhee CW Chemosphere; 2004 Apr; 55(3):369-78. PubMed ID: 14987935 [TBL] [Abstract][Full Text] [Related]
8. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources. Goss M; Richards C J Environ Manage; 2008 Jun; 87(4):623-32. PubMed ID: 18158213 [TBL] [Abstract][Full Text] [Related]
9. Improvements of wastewater treatment for groundwater protection in the Haertsfeld. Haakh F Schriftenr Ver Wasser Boden Lufthyg; 2000; 105():207-12. PubMed ID: 10842816 [TBL] [Abstract][Full Text] [Related]
10. Groundwater risk assessment at a heavily industrialised catchment and the associated impacts on a peri-urban wetland. Dimitriou E; Karaouzas I; Sarantakos K; Zacharias I; Bogdanos K; Diapoulis A J Environ Manage; 2008 Aug; 88(3):526-38. PubMed ID: 17499908 [TBL] [Abstract][Full Text] [Related]
11. Physical versus chemical effects on bacterial and bromide transport as determined from on site sediment column pulse experiments. Hall JA; Mailloux BJ; Onstott TC; Scheibe TD; Fuller ME; Dong H; DeFlaun MF J Contam Hydrol; 2005 Feb; 76(3-4):295-314. PubMed ID: 15683885 [TBL] [Abstract][Full Text] [Related]
12. Qualitative hydrological and land-use planning tool for the Israel Coastal aquifer. Melloul AJ; Wollman SH Sci Total Environ; 2003 Jun; 309(1-3):1-17. PubMed ID: 12798088 [TBL] [Abstract][Full Text] [Related]
13. [Adsorption of selected enteroviruses on sand from a groundwater stratum: effect of pH, grain size, water solutes and organic contamination]. Dizer H; Lopez Pila JM Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1988 Mar; 185(6):548-59. PubMed ID: 2837024 [TBL] [Abstract][Full Text] [Related]
14. Groundwater pollution on the Zambian Copperbelt: deciphering the source and the risk. von der Heyden CJ; New MG Sci Total Environ; 2004 Jul; 327(1-3):17-30. PubMed ID: 15172568 [TBL] [Abstract][Full Text] [Related]
15. Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio. Fong TT; Mansfield LS; Wilson DL; Schwab DJ; Molloy SL; Rose JB Environ Health Perspect; 2007 Jun; 115(6):856-64. PubMed ID: 17589591 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of pollution susceptibility of Karst aquifers of Rewa Town (Madhya Pradesh) using "DRASTIC" approach. Dubey DP; Tiwari RN; Dwivedi U J Environ Sci Eng; 2006 Apr; 48(2):113-8. PubMed ID: 17913187 [TBL] [Abstract][Full Text] [Related]
18. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sahoo GB; Ray C; Mehnert E; Keefer DA Sci Total Environ; 2006 Aug; 367(1):234-51. PubMed ID: 16460784 [TBL] [Abstract][Full Text] [Related]
19. A methodology for space-time classification of groundwater quality. Passarella G; Caputo MC Environ Monit Assess; 2006 Apr; 115(1-3):95-117. PubMed ID: 16502022 [TBL] [Abstract][Full Text] [Related]
20. Assessment of ground water vulnerability and its application to the development of protection strategy for the water supply aquifer in Owerri, Southeastern Nigeria. Ibe KM; Nwankwor GI; Onyekuru SO Environ Monit Assess; 2001 Mar; 67(3):323-60. PubMed ID: 11334446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]