These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 9226870)
1. Soil isolates of Pseudomonas spp. that utilize inositol phosphates. Richardson AE; Hadobas PA Can J Microbiol; 1997 Jun; 43(6):509-16. PubMed ID: 9226870 [TBL] [Abstract][Full Text] [Related]
2. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Unno Y; Okubo K; Wasaki J; Shinano T; Osaki M Environ Microbiol; 2005 Mar; 7(3):396-404. PubMed ID: 15683400 [TBL] [Abstract][Full Text] [Related]
3. Bioremediation potential of glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. Zhao H; Tao K; Zhu J; Liu S; Gao H; Zhou X J Gen Appl Microbiol; 2015; 61(5):165-70. PubMed ID: 26582285 [TBL] [Abstract][Full Text] [Related]
4. Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Ma Y; Wang L; Shao Z Environ Microbiol; 2006 Mar; 8(3):455-65. PubMed ID: 16478452 [TBL] [Abstract][Full Text] [Related]
5. Isolation of Inositol Hexaphosphate (IHP)-Degrading Bacteria from Arbuscular Mycorrhizal Fungal Hyphal Compartments Using a Modified Baiting Method Involving Alginate Beads Containing IHP. Hara S; Saito M Microbes Environ; 2016 Sep; 31(3):234-43. PubMed ID: 27383681 [TBL] [Abstract][Full Text] [Related]
6. The structure of a local population of phytopathogenic Pseudomonas brassicacearum from agricultural soil indicates development under purifying selection pressure. Sikorski J; Jahr H; Wackernagel W Environ Microbiol; 2001 Mar; 3(3):176-86. PubMed ID: 11321534 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of a Pseudomonas sp. strain PH1 utilizing meta-aminophenol. Kutty R; Purohit HJ; Khanna P Can J Microbiol; 2000 Mar; 46(3):211-7. PubMed ID: 10749534 [TBL] [Abstract][Full Text] [Related]
8. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. Naik PR; Raman G; Narayanan KB; Sakthivel N BMC Microbiol; 2008 Dec; 8():230. PubMed ID: 19099598 [TBL] [Abstract][Full Text] [Related]
9. Identification and assessment of genetic similarity of soil bacterial isolates of Pseudomonas spp. using molecular techniques. Lisek A; Sas Paszt L; Trzciński P Pol J Microbiol; 2014; 63(3):291-8. PubMed ID: 25546939 [TBL] [Abstract][Full Text] [Related]
10. Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Duarte GF; Rosado AS; Seldin L; de Araujo W; van Elsas JD Appl Environ Microbiol; 2001 Mar; 67(3):1052-62. PubMed ID: 11229891 [TBL] [Abstract][Full Text] [Related]
11. Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island. Goh YS; Tan IK Microbiol Res; 2012 Apr; 167(4):211-9. PubMed ID: 21945102 [TBL] [Abstract][Full Text] [Related]
12. Pseudomonas brassicacearum subsp. neoaurantiaca subsp. nov., orange-pigmented bacteria isolated from soil and the rhizosphere of agricultural plants. Ivanova EP; Christen R; Bizet C; Clermont D; Motreff L; Bouchier C; Zhukova NV; Crawford RJ; Kiprianova EA Int J Syst Evol Microbiol; 2009 Oct; 59(Pt 10):2476-81. PubMed ID: 19622656 [TBL] [Abstract][Full Text] [Related]
13. Physiological and Genotypic Characteristics of Nitrous Oxide (N2O)-Emitting Pseudomonas Species Isolated from Dent Corn Andisol Farmland in Hokkaido, Japan. Nie Y; Li L; Isoda R; Wang M; Hatano R; Hashidoko Y Microbes Environ; 2016 Jun; 31(2):93-103. PubMed ID: 27109825 [TBL] [Abstract][Full Text] [Related]
14. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Keel C; Weller DM; Natsch A; Défago G; Cook RJ; Thomashow LS Appl Environ Microbiol; 1996 Feb; 62(2):552-63. PubMed ID: 8593055 [TBL] [Abstract][Full Text] [Related]
15. Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge. Tchelet R; Meckenstock R; Steinle P; van der Meer JR Biodegradation; 1999 Apr; 10(2):113-25. PubMed ID: 10466200 [TBL] [Abstract][Full Text] [Related]
16. Highly different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Sikorski J; Teschner N; Wackernagel W Appl Environ Microbiol; 2002 Feb; 68(2):865-73. PubMed ID: 11823230 [TBL] [Abstract][Full Text] [Related]
17. Genetic and functional diversity of fluorescent Pseudomonas from rhizospheric soils of wheat crop. Yadav S; Yadav S; Kaushik R; Saxena AK; Arora DK J Basic Microbiol; 2014 May; 54(5):425-37. PubMed ID: 23681594 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. Taghavi M; Hayward C; Sly LI; Fegan M Int J Syst Bacteriol; 1996 Jan; 46(1):10-5. PubMed ID: 8573483 [TBL] [Abstract][Full Text] [Related]
19. Phosphate solubilizing rhizobacteria from an organic farm and their influence on the growth and yield of maize (Zea mays L.). Kaur G; Reddy MS J Gen Appl Microbiol; 2013; 59(4):295-303. PubMed ID: 24005179 [TBL] [Abstract][Full Text] [Related]
20. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Gulati A; Rahi P; Vyas P Curr Microbiol; 2008 Jan; 56(1):73-9. PubMed ID: 17909886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]