These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 9226960)
1. Plasmid instability kinetics in continuous culture of a recombinant Saccharomyces cerevisiae in airlift bioreactor. Zhang Z; Scharer JM; Moo-Young M J Biotechnol; 1997 May; 55(1):31-41. PubMed ID: 9226960 [TBL] [Abstract][Full Text] [Related]
2. Plasmid stability and kinetics of continuous production of glucoamylase by recombinant Saccharomyces cerevisiae in an airlift bioreactor. Kilonzo PM; Margaritis A; Bergougnou MA J Ind Microbiol Biotechnol; 2009 Sep; 36(9):1157-69. PubMed ID: 19504139 [TBL] [Abstract][Full Text] [Related]
3. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Kilonzo P; Margaritis A; Bergougnou M J Biotechnol; 2009 Aug; 143(1):60-8. PubMed ID: 19539672 [TBL] [Abstract][Full Text] [Related]
4. Protein production using recombinant yeast in an immobilized-cell-film airlift bioreactor. Zhang Z; Scharer J; Moo-Young M Biotechnol Bioeng; 1997 Jul; 55(2):241-51. PubMed ID: 18636482 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of continuous GM-CSF production by recombinant Saccharomyces cerevisiae in an airlift bioreactor. Shu CH; Yang ST J Biotechnol; 1996 Jul; 48(1-2):107-16. PubMed ID: 8818277 [TBL] [Abstract][Full Text] [Related]
6. Repeated-batch production of glucoamylase using recombinant Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. Kilonzo PM; Margaritis A; Bergougnou MA J Ind Microbiol Biotechnol; 2010 Aug; 37(8):773-83. PubMed ID: 20407916 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic and aerobic continuous cultures of Saccharomyces cerevisiae: comparison of plasmid stability and EXG1 gene expression. Lú-Chau TA; Guillán A; Núñez MJ; Roca E; Lema JM Bioprocess Biosyst Eng; 2004 Apr; 26(3):159-63. PubMed ID: 14986091 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of recombinant glucoamylase expression by introducing yeast GAL7 mRNA termination sequence. Cho KM; Cha HJ; Yoo YJ; Seo JH J Biotechnol; 1997 May; 55(1):9-20. PubMed ID: 9226959 [TBL] [Abstract][Full Text] [Related]
9. Stability studies of recombinant Saccharomyces cerevisiae in the presence of varying selection pressure. Gupta JC; Mukherjee KJ Biotechnol Bioeng; 2002 Jun; 78(5):475-88. PubMed ID: 12115116 [TBL] [Abstract][Full Text] [Related]
10. Expression and secretion of glucoamylase of Aspergillus niger in Saccharomyces cerevisiae. Tang G; Gong H; Zhong L; Yang K Chin J Biotechnol; 1994; 10(3):163-8. PubMed ID: 7893936 [TBL] [Abstract][Full Text] [Related]
11. Expression and secretion of alpha-amylase and glucoamylase in Saccharomyces cerevisiae. Luo J; He M; Li W; Zhang T Chin J Biotechnol; 1994; 10(4):241-8. PubMed ID: 7780020 [TBL] [Abstract][Full Text] [Related]
12. Construction of an alpha-amylase/glucoamylase fusion gene and its expression in Saccharomyces cerevisiae. Shibuya I; Tamura G; Shima H; Ishikawa T; Hara S Biosci Biotechnol Biochem; 1992 Jun; 56(6):884-9. PubMed ID: 1368253 [TBL] [Abstract][Full Text] [Related]
13. Production and secretion patterns of cloned glucoamylase in plasmid-harboring and chromosome-integrated recombinant yeasts employing an SUC2 promoter. Cha HJ; Chae HJ; Choi SS; Yoo YJ Appl Biochem Biotechnol; 2000 May; 87(2):81-93. PubMed ID: 10949689 [TBL] [Abstract][Full Text] [Related]
14. Overexpression and characterization of Aspergillus awamori wild-type and mutant glucoamylase secreted by the methylotrophic yeast Pichia pastoris: comparison with wild-type recombinant glucoamylase produced using Saccharomyces cerevisiae and Aspergillus niger as hosts. Fierobe HP; Mirgorodskaya E; Frandsen TP; Roepstorff P; Svensson B Protein Expr Purif; 1997 Mar; 9(2):159-70. PubMed ID: 9056481 [TBL] [Abstract][Full Text] [Related]
15. MSS11, a novel yeast gene involved in the regulation of starch metabolism. Webber AL; Lambrechts MG; Pretorius IS Curr Genet; 1997 Oct; 32(4):260-6. PubMed ID: 9342405 [TBL] [Abstract][Full Text] [Related]
16. A new promoter-probe vector for Saccharomyces cerevisiae using fungal glucoamylase cDNA as the reporter gene. Scorpione RC; De Camargo SS; Schenberg AC; Astolfi-Filho S Yeast; 1993 Jun; 9(6):599-605. PubMed ID: 8346676 [TBL] [Abstract][Full Text] [Related]
17. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins. de Moraes LM; Astolfi-Filho S; Oliver SG Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658 [TBL] [Abstract][Full Text] [Related]
18. Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Ma YJ; Lin LL; Chien HR; Hsu WH Biotechnol Appl Biochem; 2000 Feb; 31(1):55-9. PubMed ID: 10669402 [TBL] [Abstract][Full Text] [Related]
19. Effects of medium composition and nutrient limitation on loss of the recombinant plasmid pLG669-z and beta-galactosidase expression by Saccharomyces cerevisiae. O'Kennedy RD; Patching JW J Ind Microbiol Biotechnol; 1997 May; 18(5):319-25. PubMed ID: 9218361 [TBL] [Abstract][Full Text] [Related]
20. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens alpha-amylase-encoding gene in Saccharomyces cerevisiae. Steyn AJ; Pretorius IS Gene; 1991 Apr; 100():85-93. PubMed ID: 2055483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]