These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 9226960)
21. Development of stable flocculent Saccharomyces cerevisiae strain for continuous Aspergillus niger beta-galactosidase production. Oliveira C; Teixeira JA; Lima N; Da Silva NA; Domingues L J Biosci Bioeng; 2007 Apr; 103(4):318-24. PubMed ID: 17502272 [TBL] [Abstract][Full Text] [Related]
22. Population dynamics of a continuous fermentation of recombinant Saccharomyces cerevisiae using flow cytometry. Lú Chau T; Guillán A; Roca E; Núñez MJ; Lema JM Biotechnol Prog; 2001; 17(5):951-7. PubMed ID: 11587589 [TBL] [Abstract][Full Text] [Related]
23. Integration of glucoamylase gene from Aspergillus niger into Saccharomyces cerevisiae genome and its stable expression. Tang G; Yang K Chin J Biotechnol; 1995; 11(4):237-41. PubMed ID: 8739101 [TBL] [Abstract][Full Text] [Related]
24. Expression and comparison of codon optimised Aspergillus tubingensis amylase variants in Saccharomyces cerevisiae. Cripwell RA; Rose SH; van Zyl WH FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28637248 [TBL] [Abstract][Full Text] [Related]
25. Optimization of Candida tropicalis cytochrome P450alk gene expression in Saccharomyces cerevisiae with continuous cultures. Beretta I; Sanglard D; Käppeli O; Fiechter A Appl Microbiol Biotechnol; 1991 Oct; 36(1):48-60. PubMed ID: 1367775 [TBL] [Abstract][Full Text] [Related]
26. Cloning of Corticium rolfsii glucoamylase cDNA and its expression in Saccharomyces cerevisiae. Nagasaka Y; Muraki N; Kimura A; Suto M; Yokota A; Tomita F Appl Microbiol Biotechnol; 1995 Dec; 44(3-4):451-8. PubMed ID: 8597548 [TBL] [Abstract][Full Text] [Related]
27. Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis. Bui DM; Kunze I; Horstmann C; Schmidt T; Breunig KD; Kunze G Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):102-6. PubMed ID: 8920185 [TBL] [Abstract][Full Text] [Related]
28. On the level of plasmid-bearing cells in transformed cultures of Saccharomyces cerevisiae. Guerrini AM; Boglione C; Ascenzioni F; Donini P Yeast; 1991 Dec; 7(9):943-52. PubMed ID: 1803819 [TBL] [Abstract][Full Text] [Related]
29. Production of recombinant hirudin by high cell density fed-batch cultivations of a Saccharomyces cerevisiae strain: physiological considerations during the bioprocess design. Mendoza-Vega O; Hebert C; Brown SW J Biotechnol; 1994 Feb; 32(3):249-59. PubMed ID: 7764718 [TBL] [Abstract][Full Text] [Related]
30. 2-micron vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUP1-promoter-controlled expression cassette in cis. Hottiger T; Kuhla J; Pohlig G; Fürst P; Spielmann A; Garn M; Haemmerli S; Heim J Yeast; 1995 Jan; 11(1):1-14. PubMed ID: 7762296 [TBL] [Abstract][Full Text] [Related]
31. Cloning and expression of a Saccharomyces diastaticus glucoamylase gene in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Erratt JA; Nasim A J Bacteriol; 1986 May; 166(2):484-90. PubMed ID: 3009402 [TBL] [Abstract][Full Text] [Related]
32. One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing alpha-amylase, glucoamylase and pullulanase. Janse BJ; Pretorius IS Appl Microbiol Biotechnol; 1995 Mar; 42(6):878-83. PubMed ID: 7766088 [TBL] [Abstract][Full Text] [Related]
33. Stable continuous constitutive expression of a heterologous protein in Saccharomyces cerevisiae without selection pressure. Ibba M; Kuhla J; Smith A; Küenzi M Appl Microbiol Biotechnol; 1993 Jul; 39(4-5):526-31. PubMed ID: 7763923 [TBL] [Abstract][Full Text] [Related]
34. Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Kim HR; Im YK; Ko HM; Chin JE; Kim IC; Lee HB; Bai S Biotechnol Lett; 2011 Aug; 33(8):1643-8. PubMed ID: 21479627 [TBL] [Abstract][Full Text] [Related]
35. Effects of growth environment on recombinant plasmid stability in Saccharomyces cerevisiae grown in continuous culture. O'Kennedy R; Houghton CJ; Patching JW Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):126-32. PubMed ID: 8579826 [TBL] [Abstract][Full Text] [Related]
36. Combined use of growth rate correlated and growth rate independent promoters for recombinant glucoamylase production in Fusarium venenatum. Gordon C; Thomas S; Griffen A; Robson GD; Trinci AP; Wiebe MG FEMS Microbiol Lett; 2001 Jan; 194(2):229-34. PubMed ID: 11164313 [TBL] [Abstract][Full Text] [Related]
37. Effect of upstream sequences of the ADH1 promoter on the expression of Hormoconis resinae glucoamylase P by Saccharomyces cerevisiae. Vainio AE FEMS Microbiol Lett; 1994 Aug; 121(2):229-35. PubMed ID: 7926675 [TBL] [Abstract][Full Text] [Related]
38. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae]. Qu N; He XP; Guo XN; Liu N; Zhang BR Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462 [TBL] [Abstract][Full Text] [Related]
39. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations. Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077 [TBL] [Abstract][Full Text] [Related]
40. The segregation of the 2 mu-based yeast plasmid pJDB248 breaks down under conditions of slow, glucose-limited growth. Bugeja VC; Kleinman MJ; Stanbury PF; Gingold EB J Gen Microbiol; 1989 Nov; 135(11):2891-7. PubMed ID: 2693590 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]