BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 9227853)

  • 21. Computer simulation of flagellar movement: VII. Conventional but functionally different cross-bridge models for inner and outer arm dyneins can explain the effects of outer arm dynein removal.
    Brokaw CJ
    Cell Motil Cytoskeleton; 1999; 42(2):134-48. PubMed ID: 10215423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of microtubule sliding patterns in Chlamydomonas flagellar axonemes reveals dynein activity on specific doublet microtubules.
    Wargo MJ; McPeek MA; Smith EF
    J Cell Sci; 2004 May; 117(Pt 12):2533-44. PubMed ID: 15128866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A model of flagellar and ciliary functioning which uses the forces transverse to the axoneme as the regulator of dynein activation.
    Lindemann CB
    Cell Motil Cytoskeleton; 1994; 29(2):141-54. PubMed ID: 7820864
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reactivation at low ATP distinguishes among classes of paralyzed flagella mutants.
    Frey E; Brokaw CJ; Omoto CK
    Cell Motil Cytoskeleton; 1997; 38(1):91-9. PubMed ID: 9295143
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for Flagellar function.
    Huang B; Ramanis Z; Luck DJ
    Cell; 1982 Jan; 28(1):115-24. PubMed ID: 6461414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel mode of hyper-oscillation in the paralyzed axoneme of a Chlamydomonas mutant lacking the central-pair microtubules.
    Yagi T; Kamiya R
    Cell Motil Cytoskeleton; 1995; 31(3):207-14. PubMed ID: 7585990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of Chlamydomonas flagellar dynein by an axonemal protein kinase.
    Howard DR; Habermacher G; Glass DB; Smith EF; Sale WS
    J Cell Biol; 1994 Dec; 127(6 Pt 1):1683-92. PubMed ID: 7798320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of flagellar dynein by an axonemal type-1 phosphatase in Chlamydomonas.
    Habermacher G; Sale WS
    J Cell Sci; 1996 Jul; 109 ( Pt 7)():1899-907. PubMed ID: 8832412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tubulin polyglutamylation regulates flagellar motility by controlling a specific inner-arm dynein that interacts with the dynein regulatory complex.
    Kubo T; Yagi T; Kamiya R
    Cytoskeleton (Hoboken); 2012 Dec; 69(12):1059-68. PubMed ID: 23047862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein.
    Okita N; Isogai N; Hirono M; Kamiya R; Yoshimura K
    J Cell Sci; 2005 Feb; 118(Pt 3):529-37. PubMed ID: 15657081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sperm flagella: comparative and phylogenetic perspectives of protein components.
    Inaba K
    Mol Hum Reprod; 2011 Aug; 17(8):524-38. PubMed ID: 21586547
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of dyneins that localize exclusively to the proximal portion of Chlamydomonas flagella.
    Yagi T; Uematsu K; Liu Z; Kamiya R
    J Cell Sci; 2009 May; 122(Pt 9):1306-14. PubMed ID: 19351714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The geometric clutch as a working hypothesis for future research on cilia and flagella.
    Lindemann CB
    Ann N Y Acad Sci; 2007 Apr; 1101():477-93. PubMed ID: 17303832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bend propagation drives central pair rotation in Chlamydomonas reinhardtii flagella.
    Mitchell DR; Nakatsugawa M
    J Cell Biol; 2004 Aug; 166(5):709-15. PubMed ID: 15337779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor.
    Sakakibara H; Kojima H; Sakai Y; Katayama E; Oiwa K
    Nature; 1999 Aug; 400(6744):586-90. PubMed ID: 10448863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of dynein-driven microtubule sliding by an axonemal kinase and phosphatase in Chlamydomonas flagella.
    Habermacher G; Sale WS
    Cell Motil Cytoskeleton; 1995; 32(2):106-9. PubMed ID: 8681389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella.
    Wargo MJ; Smith EF
    Proc Natl Acad Sci U S A; 2003 Jan; 100(1):137-42. PubMed ID: 12518061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolated flagellar outer arm dynein translocates brain microtubules in vitro.
    Paschal BM; King SM; Moss AG; Collins CA; Vallee RB; Witman GB
    Nature; 1987 Dec 17-23; 330(6149):672-4. PubMed ID: 2960903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein.
    Kamiya R; Kurimoto E; Muto E
    J Cell Biol; 1991 Feb; 112(3):441-7. PubMed ID: 1825085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Keeping an eye on I1: I1 dynein as a model for flagellar dynein assembly and regulation.
    Wirschell M; Hendrickson T; Sale WS
    Cell Motil Cytoskeleton; 2007 Aug; 64(8):569-79. PubMed ID: 17549744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.