BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9227904)

  • 1. Oral-aboral ectoderm differentiation of sea urchin embryos is disrupted in response to calcium ionophore.
    Akasaka K; Uemoto H; Wilt F; Mitsunaga-Nakatsubo K; Shimada H
    Dev Growth Differ; 1997 Jun; 39(3):373-9. PubMed ID: 9227904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks.
    Amore G; Yavrouian RG; Peterson KJ; Ransick A; McClay DR; Davidson EH
    Dev Biol; 2003 Sep; 261(1):55-81. PubMed ID: 12941621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A single-cell RNA-seq analysis of Brachyury-expressing cell clusters suggests a morphogenesis-associated signal center of oral ectoderm in sea urchin embryos.
    Satoh N; Hisata K; Foster S; Morita S; Nishitsuji K; Oulhen N; Tominaga H; Wessel GM
    Dev Biol; 2022 Mar; 483():128-142. PubMed ID: 35038441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes.
    Angerer LM; Oleksyn DW; Levine AM; Li X; Klein WH; Angerer RC
    Development; 2001 Nov; 128(22):4393-404. PubMed ID: 11714666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.
    Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K
    Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oral/aboral ectoderm differentiation of the sea urchin embryo depends on a planar or secretory signal from the vegetal hemisphere.
    Yoshikawa S
    Dev Growth Differ; 1997 Jun; 39(3):319-27. PubMed ID: 9227898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hbox1 and Hbox7 are involved in pattern formation in sea urchin embryos.
    Ishii M; Mitsunaga-Nakatsubo K; Kitajima T; Kusunoki S; Shimada H; Akasaka K
    Dev Growth Differ; 1999 Jun; 41(3):241-52. PubMed ID: 10400386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion flow regulates left-right asymmetry in sea urchin development.
    Hibino T; Ishii Y; Levin M; Nishino A
    Dev Genes Evol; 2006 May; 216(5):265-76. PubMed ID: 16534626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced O2 and elevated ROS in sea urchin embryos leads to defects in ectoderm differentiation.
    Agca C; Klein WH; Venuti JM
    Dev Dyn; 2009 Jul; 238(7):1777-87. PubMed ID: 19517573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling.
    Li X; Wikramanayake AH; Klein WH
    Dev Biol; 1999 Aug; 212(2):425-39. PubMed ID: 10433832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor.
    Ramachandran RK; Wikramanayake AH; Uzman JA; Govindarajan V; Tomlinson CR
    Development; 1997 Jun; 124(12):2355-64. PubMed ID: 9199362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo.
    Zito F; Costa C; Sciarrino S; Poma V; Russo R; Angerer LM; Matranga V
    Dev Biol; 2003 Dec; 264(1):217-27. PubMed ID: 14623243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. USF in the Lytechinus sea urchin embryo may act as a transcriptional repressor in non-aboral ectoderm cells for the cell lineage-specific expression of the LpS1 genes.
    Seid CA; George JM; Sater AK; Kozlowski MT; Lee H; Govindarajan V; Ramachandran RK; Tomlinson CR
    J Mol Biol; 1996 Nov; 264(1):7-19. PubMed ID: 8950263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of three mRNAs enriched in embryos of the direct-developing sea urchin Heliocidaris erythrogramma: evolution of larval ectoderm.
    Haag ES; Raff RA
    Dev Genes Evol; 1998 Jun; 208(4):188-204. PubMed ID: 9634485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.