These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. Rumsey SC; Daruwala R; Al-Hasani H; Zarnowski MJ; Simpson IA; Levine M J Biol Chem; 2000 Sep; 275(36):28246-53. PubMed ID: 10862609 [TBL] [Abstract][Full Text] [Related]
3. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Colville CA; Seatter MJ; Jess TJ; Gould GW; Thomas HM Biochem J; 1993 Mar; 290 ( Pt 3)(Pt 3):701-6. PubMed ID: 8457197 [TBL] [Abstract][Full Text] [Related]
4. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Burant CF; Bell GI Biochemistry; 1992 Oct; 31(42):10414-20. PubMed ID: 1420159 [TBL] [Abstract][Full Text] [Related]
5. In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle. Ryder JW; Kawano Y; Chibalin AV; Rincón J; Tsao TS; Stenbit AE; Combatsiaris T; Yang J; Holman GD; Charron MJ; Zierath JR Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):321-8. PubMed ID: 10455018 [TBL] [Abstract][Full Text] [Related]
6. Genistein is a natural inhibitor of hexose and dehydroascorbic acid transport through the glucose transporter, GLUT1. Vera JC; Reyes AM; Cárcamo JG; Velásquez FV; Rivas CI; Zhang RH; Strobel P; Iribarren R; Scher HI; Slebe JC J Biol Chem; 1996 Apr; 271(15):8719-24. PubMed ID: 8621505 [TBL] [Abstract][Full Text] [Related]
7. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. Arbuckle MI; Kane S; Porter LM; Seatter MJ; Gould GW Biochemistry; 1996 Dec; 35(51):16519-27. PubMed ID: 8987985 [TBL] [Abstract][Full Text] [Related]
8. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways. Corpe CP; Lee JH; Kwon O; Eck P; Narayanan J; Kirk KL; Levine M J Biol Chem; 2005 Feb; 280(7):5211-20. PubMed ID: 15590689 [TBL] [Abstract][Full Text] [Related]
9. Characterization of GLUT3 protein expressed in Chinese hamster ovary cells. Asano T; Katagiri H; Takata K; Tsukuda K; Lin JL; Ishihara H; Inukai K; Hirano H; Yazaki Y; Oka Y Biochem J; 1992 Nov; 288 ( Pt 1)(Pt 1):189-93. PubMed ID: 1445263 [TBL] [Abstract][Full Text] [Related]
10. Expression of facilitative glucose transporter isoforms in human brain tumors. Nagamatsu S; Sawa H; Wakizaka A; Hoshino T J Neurochem; 1993 Dec; 61(6):2048-53. PubMed ID: 8245960 [TBL] [Abstract][Full Text] [Related]
11. Expression of glucose transporters in human peritoneal mesothelial cells. Schröppel B; Fischereder M; Wiese P; Segerer S; Huber S; Kretzler M; Heiss P; Sitter T; Schlöndorff D Kidney Int; 1998 May; 53(5):1278-87. PubMed ID: 9573543 [TBL] [Abstract][Full Text] [Related]
12. Presence and differential expression of SGLT1, GLUT1, GLUT2, GLUT3 and GLUT5 hexose-transporter mRNAs in Caco-2 cell clones in relation to cell growth and glucose consumption. Mahraoui L; Rodolosse A; Barbat A; Dussaulx E; Zweibaum A; Rousset M; Brot-Laroche E Biochem J; 1994 Mar; 298 Pt 3(Pt 3):629-33. PubMed ID: 8141777 [TBL] [Abstract][Full Text] [Related]
14. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site. Seatter MJ; De la Rue SA; Porter LM; Gould GW Biochemistry; 1998 Feb; 37(5):1322-6. PubMed ID: 9477959 [TBL] [Abstract][Full Text] [Related]
15. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C. Angulo C; Rauch MC; Droppelmann A; Reyes AM; Slebe JC; Delgado-López F; Guaiquil VH; Vera JC; Concha II J Cell Biochem; 1998 Nov; 71(2):189-203. PubMed ID: 9779818 [TBL] [Abstract][Full Text] [Related]
16. Expression and cellular localization of glucose transporters (GLUT1, GLUT3, GLUT4) during differentiation of myogenic cells isolated from rat foetuses. Guillet-Deniau I; Leturque A; Girard J J Cell Sci; 1994 Mar; 107 ( Pt 3)():487-96. PubMed ID: 8006068 [TBL] [Abstract][Full Text] [Related]
17. Dehydroascorbic Acid Promotes Cell Death in Neurons Under Oxidative Stress: a Protective Role for Astrocytes. García-Krauss A; Ferrada L; Astuya A; Salazar K; Cisternas P; Martínez F; Ramírez E; Nualart F Mol Neurobiol; 2016 Nov; 53(9):5847-5863. PubMed ID: 26497038 [TBL] [Abstract][Full Text] [Related]
18. Intestinal dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8. Corpe CP; Eck P; Wang J; Al-Hasani H; Levine M J Biol Chem; 2013 Mar; 288(13):9092-101. PubMed ID: 23396969 [TBL] [Abstract][Full Text] [Related]
19. Unique mechanism of GLUT3 glucose transporter regulation by prolonged energy demand: increased protein half-life. Khayat ZA; McCall AL; Klip A Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):713-8. PubMed ID: 9677332 [TBL] [Abstract][Full Text] [Related]
20. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. Maulén NP; Henríquez EA; Kempe S; Cárcamo JG; Schmid-Kotsas A; Bachem M; Grünert A; Bustamante ME; Nualart F; Vera JC J Biol Chem; 2003 Mar; 278(11):9035-41. PubMed ID: 12381735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]