These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9228170)

  • 1. Comparison of in situ and laboratory gamma spectroscopy of natural radionuclides in desert soil.
    Benke RR; Kearfott KJ
    Health Phys; 1997 Aug; 73(2):350-61. PubMed ID: 9228170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion factors for external gamma dose derived from natural radionuclides in soils.
    Quindos LS; Fernández PL; Ródenas C; Gómez-Arozamena J; Arteche J
    J Environ Radioact; 2004; 71(2):139-45. PubMed ID: 14567949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey).
    Kurnaz A; Küçükömeroğlu B; Keser R; Okumusoglu NT; Korkmaz F; Karahan G; Cevik U
    Appl Radiat Isot; 2007 Nov; 65(11):1281-9. PubMed ID: 17719792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. InSiCal - A tool for calculating calibration factors and activity concentrations in in situ gamma spectrometry.
    Mauring A; Vidmar T; Gäfvert T; Drefvelin J; Fazio A
    J Environ Radioact; 2018 Aug; 188():58-66. PubMed ID: 29074271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IN-SITU GAMMA-RAY SPECTROMETRY FOR RADIOACTIVITY ANALYSIS OF SOIL USING NaI(Tl) AND LaBr3(Ce) DETECTORS.
    Lee JH; Byun JI
    Radiat Prot Dosimetry; 2019 Dec; 187(3):300-309. PubMed ID: 31268526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Monte Carlo-based calibrations of HPGe detectors for in situ gamma-ray spectrometry.
    Boson J; Plamboeck AH; Ramebäck H; Agren G; Johansson L
    J Environ Radioact; 2009 Nov; 100(11):935-40. PubMed ID: 19604609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a Monte Carlo method to the uncertainty assessment in in situ gamma-ray spectrometry.
    Persson L; Boson J; Nylén T; Ramebäck H
    J Environ Radioact; 2018 Jul; 187():1-7. PubMed ID: 29459254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of in-situ gamma spectrometry methods by Monte-Carlo simulations.
    Mrdja D; Bikit K; Forkapic S; Bikit I; Slivka J; Hansman J
    J Environ Radioact; 2018 Aug; 188():23-29. PubMed ID: 29132981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ gamma-ray spectrometry for environmental monitoring: a semi empirical calibration method.
    Boson J; Lidström K; Nylén T; Agren G; Johansson L
    Radiat Prot Dosimetry; 2006; 121(3):310-6. PubMed ID: 16632586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of natural and anthropogenic radioactivity levels in rocks and soils in the environs of Swieradow Zdroj in Sudetes, Poland, by in situ gamma-ray spectrometry.
    Malczewski D; Teper L; Dorda J
    J Environ Radioact; 2004; 73(3):233-45. PubMed ID: 15050357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Data quality objectives for surface-soil cleanup operation using in situ gamma spectrometry for concentration measurements.
    Fong SH; Alvarez JL
    Health Phys; 1997 Feb; 72(2):286-95. PubMed ID: 9003715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical method for the calibration of in situ gamma ray spectroscopy systems.
    Dewey SC; Whetstone ZD; Kearfott KJ
    Health Phys; 2010 May; 98(5):657-71. PubMed ID: 20386196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on natural radiation exposure in different realistic living rooms.
    El-Hussein A
    J Environ Radioact; 2005; 79(3):355-67. PubMed ID: 15607521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of an in-situ BEGe detector using semi-empirical and Monte Carlo techniques.
    Agrafiotis K; Karfopoulos KL; Anagnostakis MJ
    Appl Radiat Isot; 2011 Aug; 69(8):1151-5. PubMed ID: 21193317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy associated with the activity determination by in situ gamma spectrometry of naturally occurring radionuclides in soils.
    Baeza A; Corbacho JA; Guillén J
    J Environ Radioact; 2016 Oct; 162-163():219-224. PubMed ID: 27267159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of in situ and laboratory gamma spectrometry measurements for determination of ²²⁶Ra, ⁴⁰K and ¹³⁷Cs in soil.
    Al-Masri MS; Doubal AW
    Appl Radiat Isot; 2013 May; 75():50-7. PubMed ID: 23455404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in situ gamma-ray spectrometry intercomparison.
    Shebell P; Faller S; Monetti M; Bronson F; Hagenauer R; Jarrell CL; Keefer D; Moos JR; Panzarino N; Reiman RT; Sparks BJ; Thisell M
    Health Phys; 2003 Dec; 85(6):662-77. PubMed ID: 14626318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The significance of variations in the angular correction factor in in situ gamma spectrometry.
    MacDonald J; Gibson CJ; Fish PJ; Assinder DJ
    J Radiol Prot; 1998 Mar; 18(1):37-42. PubMed ID: 9594115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radionuclides in hot mineral spring waters in Jordan.
    Saqan SA; Kullab MK; Ismail AM
    J Environ Radioact; 2001; 52(1):99-107. PubMed ID: 11202689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of the in and ex situ determination of environmental radiation and dosimetry levels.
    Baeza A; Corbacho JA
    Radiat Prot Dosimetry; 2005; 113(1):90-8. PubMed ID: 15561741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.