These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
70 related articles for article (PubMed ID: 9228806)
1. Characterizing cochlear mechano-electric transduction in ears damaged with pure tones. Chertoff ME; Steele TC; Bian L J Acoust Soc Am; 1997 Jul; 102(1):441-50. PubMed ID: 9228806 [TBL] [Abstract][Full Text] [Related]
2. Characterizing cochlear mechano-electric transduction using a nonlinear systems identification procedure. Chertoff ME; Steele T; Ator GA; Bian L J Acoust Soc Am; 1996 Dec; 100(6):3741-53. PubMed ID: 8969475 [TBL] [Abstract][Full Text] [Related]
3. Differentiation of cochlear pathophysiology in ears damaged by salicylate or a pure tone using a nonlinear systems identification technique. Bian L; Chertoff ME J Acoust Soc Am; 1998 Oct; 104(4):2261-71. PubMed ID: 10491690 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing cochlear pathophysiology in 4-aminopyridine and furosemide treated ears using a nonlinear systems identification technique. Bian L; Chertoff ME J Acoust Soc Am; 2001 Feb; 109(2):671-85. PubMed ID: 11248972 [TBL] [Abstract][Full Text] [Related]
5. Effects of acoustic overstimulation on cochlear evoked potentials. Yoshida M; Aoyagi M; Makishima K Eur Arch Otorhinolaryngol; 1994; 251 Suppl 1():S61-4. PubMed ID: 11894778 [TBL] [Abstract][Full Text] [Related]
6. Influence of hearing sensitivity on mechano-electric transduction. Chertoff ME; Yi X; Lichtenhan JT J Acoust Soc Am; 2003 Dec; 114(6 Pt 1):3251-63. PubMed ID: 14714806 [TBL] [Abstract][Full Text] [Related]
7. Modulation of cochlear responses in the guinea pig by low-frequency, phase-shifted maskers following noise trauma. Hoehmann D; Müller S; Dornhoffer JL Eur Arch Otorhinolaryngol; 1995; 252(1):S20-5. PubMed ID: 7718220 [TBL] [Abstract][Full Text] [Related]
8. Dead regions in the cochlea at 4 kHz in elderly adults: relation to absolute threshold, steepness of audiogram, and pure-tone average. Aazh H; Moore BC J Am Acad Audiol; 2007 Feb; 18(2):97-106. PubMed ID: 17402296 [TBL] [Abstract][Full Text] [Related]
9. Characterizing cochlear mechano-electric transduction with a nonlinear system identification technique: the influence of the middle ear. Choi CH; Chertoff ME; Yi X J Acoust Soc Am; 2002 Dec; 112(6):2898-909. PubMed ID: 12509011 [TBL] [Abstract][Full Text] [Related]
10. Origin of cubic difference tones generated by high-intensity stimuli: effect of ischemia and auditory fatigue on the gerbil cochlea. Mom T; Bonfils P; Gilain L; Avan P J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1477-88. PubMed ID: 11572358 [TBL] [Abstract][Full Text] [Related]
11. [Study of the cochlea by evoked otoemissions. Physiological interpretation of results]. Avan P; Bonfils P; Loth D; Teyssou M; Trotoux J; Narcy P Ann Otolaryngol Chir Cervicofac; 1991; 108(3):135-41. PubMed ID: 2069327 [TBL] [Abstract][Full Text] [Related]
12. Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. Avan P; Bonfils P; Loth D; Elbez M; Erminy M J Acoust Soc Am; 1995 May; 97(5 Pt 1):3012-20. PubMed ID: 7759641 [TBL] [Abstract][Full Text] [Related]
13. Frequency selectivity in noise-damaged cochleas. Davis RI; Hamernik RP; Ahroon WA Audiology; 1993; 32(2):110-31. PubMed ID: 8476350 [TBL] [Abstract][Full Text] [Related]
14. Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss. Sly DJ; Campbell L; Uschakov A; Saief ST; Lam M; O'Leary SJ Otol Neurotol; 2016 Oct; 37(9):1223-30. PubMed ID: 27631825 [TBL] [Abstract][Full Text] [Related]
15. Constructing a cochlear transducer function from the summating potential using a low-frequency bias tone. Choi CH; Chertoff ME; Bian L; Lerner D J Acoust Soc Am; 2004 Nov; 116(5):2996-3007. PubMed ID: 15603145 [TBL] [Abstract][Full Text] [Related]
16. Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise. Harding GW; Bohne BA; Lee SC; Salt AN Hear Res; 2007 Mar; 225(1-2):128-38. PubMed ID: 17300889 [TBL] [Abstract][Full Text] [Related]
17. Estimation of Minor Conductive Hearing Loss in Humans Using Distortion Product Otoacoustic Emissions. Marcrum SC; Kummer P; Steffens T Ear Hear; 2017; 38(4):391-398. PubMed ID: 28169838 [TBL] [Abstract][Full Text] [Related]
19. Insights into linear and nonlinear cochlear transduction: application of a new system-identification procedure on transient-evoked otoacoustic emissions data. Krishnan G; Chertoff ME J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):770-81. PubMed ID: 9972563 [TBL] [Abstract][Full Text] [Related]
20. The level and growth behavior of the 2 f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss. Kummer P; Janssen T; Arnold W J Acoust Soc Am; 1998 Jun; 103(6):3431-44. PubMed ID: 9637030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]